A ternary variety generated by lattices
Commentationes Mathematicae Universitatis Carolinae (1981)
- Volume: 022, Issue: 4, page 773-784
- ISSN: 0010-2628
Access Full Article
topHow to cite
topReferences
top- K. A. BAKER, Congruence-distributive polynomial reducts of lattices, Algebra Univ. 9 (1979), 142-145. (1979) Zbl0407.08004MR0523928
- J. BERMAN, A proof of Lyndon's finite basis theorem, Discrete Math. 29 (1980), 229-233. (1980) Zbl0449.08004MR0560765
- W. H. CORNISH, A multiplier approach to implicative BCK-algebras, Math. Seminar Notes Kobe Univ. 8 (1980), 157-169. (1980) Zbl0465.03029MR0590176
- W. H. CORNISH, -permutability and quasi commutative BCK-algebras, Math. Japonica 25 (1980), 477-496. (1980) MR0594550
- W. H. CORNISH, On Iséki's BCK-algebras, to appear as Chapter 9 in Algebraic Structures and Applications, Marcel-Dekker, 1981. (1981)
- W. H. CORNISH R. C. HICKMAN, Weakly distributive semilattices, Acta Sci. Math. Hungar. 32 (1978), 5-16. (1978) MR0551490
- R. HICKMAN, Join algebras, Commun. in Alg. 8 (1980), 1653-1685. (1980) Zbl0436.06003MR0585925
- R. C. LYNDON, Identities in two-valued calculi, Trans. Amer. Math. Soc. 71(1951), 457-465. (1951) Zbl0044.00201MR0044470
- R. PADMANABHAN E. W. QUACKENBUSH, Equational theories of algebras with distributive congruences, Proc. Amer. Math. Soc. 41 (1973), 373-377. (1973) MR0325498