Generic differentiability of mappings and convex functions in Banach and locally convex spaces

Le Van Hot

Commentationes Mathematicae Universitatis Carolinae (1982)

  • Volume: 023, Issue: 2, page 207-232
  • ISSN: 0010-2628

How to cite

top

Le Van Hot. "Generic differentiability of mappings and convex functions in Banach and locally convex spaces." Commentationes Mathematicae Universitatis Carolinae 023.2 (1982): 207-232. <http://eudml.org/doc/17175>.

@article{LeVanHot1982,
author = {Le Van Hot},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {generic differentiability; convex functions in Banach and locally convex spaces; Gateaux-differentiability; Fréchet-differentiability; S- differentiability; Asplund spaces},
language = {eng},
number = {2},
pages = {207-232},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Generic differentiability of mappings and convex functions in Banach and locally convex spaces},
url = {http://eudml.org/doc/17175},
volume = {023},
year = {1982},
}

TY - JOUR
AU - Le Van Hot
TI - Generic differentiability of mappings and convex functions in Banach and locally convex spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1982
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 023
IS - 2
SP - 207
EP - 232
LA - eng
KW - generic differentiability; convex functions in Banach and locally convex spaces; Gateaux-differentiability; Fréchet-differentiability; S- differentiability; Asplund spaces
UR - http://eudml.org/doc/17175
ER -

References

top
  1. R. ANANTHARAMAN T. LEVIS J. H. M. WHITFIELD, Smoothabilily, strong smoothability and dentability in Banach spaces, Canad. Math. Bull. 24 (1981), 59-68. (1981) MR0611210
  2. N. ARONSZAJN, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147-190. (1976) Zbl0342.46034MR0425608
  3. E. ASPLUND, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-48. (1968) Zbl0162.17501MR0231199
  4. E. ASPLUND R. J. ROCKAFFELAR, Gradients of convex functions, Trans. Amer. Math. Soc. 139 (1969), 443-467. (1969) MR0240621
  5. J. M. BORWEIN, Weak local supportability and application to approximation, Pacific J. Math. 82 (1979), 323-338. (1979) MR0551692
  6. J. R. CHRISTENSEN, Topology and Borel structure, Math. Studia No. 10 North-Holland, Amsterdam 1974. (1974) Zbl0273.28001
  7. F. H. CLARK, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262. (1975) MR0367131
  8. J. B. COLLIER, A claas of strong differentiability spaces, Proc. Amer. Math. Soc. 53 (1975), 420-422. (1975) MR0388044
  9. J. DIESTEL, Geometry of Banach spaces, Lecture Notes in Math. No. 485, Springer-Verlag 1975. (1975) Zbl0307.46009MR0461094
  10. G. EDGAR, Meaaurability in Banach spaces, Indiana Univ. Math. J. 26 (1977), 663-677. (1977) 
  11. I. EKELAND G. LEBOURG, Generic differentiability and perturbed optimization problems in Banach spaces, Trans. Amer. Math. Soc. 224 (1976), 193-216. (1976) MR0431253
  12. R. E. HUFF P. D. MORRIS, Dual spaces with the Krein-Milman property have the Radon-Nikodym property, Proc. Amer. Math. Soc. 49 (1975), 104-108. (1975) MR0361775
  13. KA SING LAU C. E. WEIL, Differentiability via directional derivatives, Proc. Amer. Math. Soc. 70 (1978), 11-1. (1978) MR0486354
  14. J. KOLOMÝ, On the differentiability of operators and convex functions, Comment. Math. Univ. Carolinae 9 (1968), 441-454. (1968) MR0238077
  15. M. K. KRASNOSELSKIJ P. P. ZABREJKO E. I. PUSTYLNIK P. E. SOBOLEVSKIJ, Integralnyje operatory v prostranstvach summirujemych funkcij, Moskva 1966. (1966) 
  16. KUTATELADZE, Vypuklyje operatory, Uspechy Mat. nauk 34 (1979), 167-196. (1979) 
  17. D. G. LARMAN R. R. PHELPS, Gâteaux differentiability of convex functions on Banach spaces, London Math. Soc. 20 (1979), 115-127. (1979) MR0545208
  18. G. LEBOURG, Generic differentiability of Lipschitzian functions, Trans. Amer. Math. Soc. 256 (1979), 125-144. (1979) Zbl0435.46031MR0546911
  19. P. MANKIEWICZ, On Lipschitz mapping between Fréchet spaces, Studia Math. 41 (1972), 225-241. (1972) MR0308724
  20. F. MIGNOT, Côntrol danse lea variationelles elliptiques, J. Functional Analysis 22 (2) (1976). (1976) MR0423155
  21. I. NAMIOKA R. R. PHELPS, Banach spaces which are Asplund spaces, Duke Math. J.-42 (1975), 735-750. (1975) MR0390721
  22. K. RITTER, Optimization theory in linear spaces: part III, Mathematical programming in partial ordered Banach spaces, Math. Ann. 184 (1970), 133-154. (1970) MR0258468
  23. H. H. SCHAEFER, Banach lattices and positive operators, Springer-Verlag, New York 1974. (1974) Zbl0296.47023MR0423039
  24. M. TALAGRAND, Deux examples de fonetions convexes, C.R. Acad. Sci. AB 288, No 8 (1979), A461-A464. (1979) MR0527697
  25. M. M. VAJNBERG, Variacionnyje metody issledovanija neline jnych operatorov, Nauka, Moskva 1956. (1956) 
  26. S. YAMAMURO, Differential calculus in topological linear spaces, Lecture Notes in Mathematics No 374, Springer-Verlag, New York 1974. (1974) Zbl0276.58001MR0488118
  27. Ch. STEGALL, The duality between Asplund spaces and spaces with Radon-Nikodym property, Israel J. Math. 59 (1978), 408-412. (1978) MR0493268

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.