Constant and variable drop theorems on metrizable locally convex spaces

Mihai Turinici

Commentationes Mathematicae Universitatis Carolinae (1982)

  • Volume: 023, Issue: 2, page 383-398
  • ISSN: 0010-2628

How to cite

top

Turinici, Mihai. "Constant and variable drop theorems on metrizable locally convex spaces." Commentationes Mathematicae Universitatis Carolinae 023.2 (1982): 383-398. <http://eudml.org/doc/17189>.

@article{Turinici1982,
author = {Turinici, Mihai},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {maximal element; constant drop; support theorem; variable drop; mapping theorem; drop theorem; metrizable locally convex spaces; maximality principle; quasi-ordered quasi-metrizable uniform space; Brezis-Browder order principle},
language = {eng},
number = {2},
pages = {383-398},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Constant and variable drop theorems on metrizable locally convex spaces},
url = {http://eudml.org/doc/17189},
volume = {023},
year = {1982},
}

TY - JOUR
AU - Turinici, Mihai
TI - Constant and variable drop theorems on metrizable locally convex spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1982
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 023
IS - 2
SP - 383
EP - 398
LA - eng
KW - maximal element; constant drop; support theorem; variable drop; mapping theorem; drop theorem; metrizable locally convex spaces; maximality principle; quasi-ordered quasi-metrizable uniform space; Brezis-Browder order principle
UR - http://eudml.org/doc/17189
ER -

References

top
  1. M. ALTMAN, Contractor directions, directional contractors and directional contractions for solving equations, Pacific J. Math. 62 (1976), 1-18. (1976) Zbl0352.47027MR0473939
  2. M. ALTMAN, An application of the method of contractor directions to nonlinear programming, Numer. Funct. Anal. and Optim. 1 (1979), 647-663. (1979) Zbl0444.49021MR0552245
  3. E. BISHOP R. R. PHELPS, The support functionals of a convex set, Proc. Symp. Pure Math., vol. VII (Convexity), pp. 27-36, Amer. Math. Soc., Providence R.I., 1963. (1963) MR0154092
  4. H. BRÉZIS F. E. BROWDER, A general principle on ordered sets in nonlinear functional analysis, Adv. in Math. 21 (1976), 355-364. (1976) MR0425688
  5. A. BRØNDSTED, On a lemma of Bishop and Phelps, Pacific J. Math. 55 (1974), 335-341. (1974) MR0380343
  6. A. BRØNDSTED, Fixed points and partial orders, Proc. Amer. Math. Soc. 60 (1976), 365-366. (1976) MR0417867
  7. A. BRØNDSTED, Common fixed points and partial orders, Proc. Amer. Math. Soc. 77 (1979), 365-368. (1979) MR0545597
  8. F. E. BROWDER, Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifolds, J. Funct. Anal. 8 (1971), 250-274. (1971) Zbl0228.47044MR0288638
  9. F. E. BROWDER, On a theorem of Caristi and Kirk, Fixed Point Theory and its Applications, pp. 23-27, Academic Press, New York, 1976. (1976) Zbl0379.54016MR0461474
  10. J. CARISTI, Fixed point theorems for mappings satisfying inwardness conditions, , Trans. Amer. Math. Soc. 215 (1976), 241-251. (1976) Zbl0305.47029MR0394329
  11. W. J. CRAMER W. O. RAY, Solvability of nonlinear operator equations, Pacific J. Math. 95 (1981), 37-50. (1981) MR0631657
  12. J. DANEŠ, A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. 6 (1972), 369-375. (1972) MR0317130
  13. D. DOWNING W. A. KIRK, A generalization of Caristi's theorem with applications to nonlinear mapping theory, Pacific J. Math. 69 (1977), 339-346. (1977) MR0440426
  14. I. EKELAND, Sur les problèmes variationals, C.R. Acad. Sci. Paris, 275 (1972), 1057-1059. (1972) MR0310670
  15. I. EKELAND, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. (1974) Zbl0286.49015MR0346619
  16. I. EKELAND, Nonconvex minimization problems, Bull. Amer. Math. Soc., N.S. 1 (1979), 443-474. (1979) Zbl0441.49011MR0526967
  17. R. B. HOLMES, Geometric functional analysis and its applications, Springer Verlag, New York, 1975. (1975) Zbl0336.46001MR0410335
  18. S. KASAHARA, On fixed points in partially ordered sets and Kirk-Caristi theorem, Math. Sem. Notes Kobe Univ. 3 (1975), 229-232. (1975) Zbl0341.54056MR0405396
  19. W. A. KIRK, Caristi's fixed point theorem and metric convexity, Colloq. Math. 36 (1976), 81-86. (1976) Zbl0353.53041MR0436111
  20. W. A. KIRK J. CARISTI, Mapping theorems in metric and Banach spaces, Bull. Acad. Pol. Sci. 23 (1975), 891-894. (1975) MR0385654
  21. C. KURATOWSKI, Topologie, vol. I, P.W.N., Warszawa, 1958. (1958) Zbl0078.14603MR0090795
  22. L. PASICKI, A short proof of the Caristi theorem, Comment. Math. 20 (1977/78), 427-428. (1977) MR0519379
  23. S. I. POHOZHAYEV, On the normal solvability for nonlinear operators, (Russian), Dokl. Akad. Nauk SSSR 184 (1969), 40-43. (1969) 
  24. J. SIEGEL, A new proof of Caristi's fixed point theorem, Proc. Amer. Math. Soc. 66 (1977), 54-56. (1977) Zbl0369.54022MR0458403
  25. M. TURINICI, Maximal elements in partially ordered topological spaces and applications, An. St. Univ. "Al. I. Cuza" Iasi, 24 (1978), 259-264. (1978) MR0533753
  26. M. TURINICI, Function lipschitzian mappings on convex metric spaces, Comment. Math. Univ. Carolinae 22 (1981), 289-303. (1981) Zbl0497.54010MR0620364
  27. M. TURINICI, Local and global lipschitzian mappings on ordered metric spaces, Math. Nachrichten, to appear. Zbl0481.54008MR0638331
  28. M. TURINICI, Mapping theorems via variable drops in Banach spaces, Rend. Ist. Lombardo, to appear. Zbl0504.46008MR0698680
  29. C. URSESCU, Sur le contingent dans les espaces de Banach, Proc. Inst. Math. Iasi, pp. 183-184, Ed. Acad. RSR, Bucuresti, 1976. (1976) Zbl0372.46019MR0450943
  30. C. S. WONG, On a fixed point theorem of contractive type, Proc. Amer. Math. Soc. 57 (1976), 283-284. (1976) Zbl0329.54042MR0407826
  31. P. P. ZABREDCO M. A. KRASNOSELSKII, Solvability of nonlinear operator equations, (Russian), Funkc. Analiz i ego Prilož. 5 (1971), 42-44. (1971) MR0283646

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.