Constant and variable drop theorems on metrizable locally convex spaces
Commentationes Mathematicae Universitatis Carolinae (1982)
- Volume: 023, Issue: 2, page 383-398
- ISSN: 0010-2628
Access Full Article
topHow to cite
topTurinici, Mihai. "Constant and variable drop theorems on metrizable locally convex spaces." Commentationes Mathematicae Universitatis Carolinae 023.2 (1982): 383-398. <http://eudml.org/doc/17189>.
@article{Turinici1982,
author = {Turinici, Mihai},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {maximal element; constant drop; support theorem; variable drop; mapping theorem; drop theorem; metrizable locally convex spaces; maximality principle; quasi-ordered quasi-metrizable uniform space; Brezis-Browder order principle},
language = {eng},
number = {2},
pages = {383-398},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Constant and variable drop theorems on metrizable locally convex spaces},
url = {http://eudml.org/doc/17189},
volume = {023},
year = {1982},
}
TY - JOUR
AU - Turinici, Mihai
TI - Constant and variable drop theorems on metrizable locally convex spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1982
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 023
IS - 2
SP - 383
EP - 398
LA - eng
KW - maximal element; constant drop; support theorem; variable drop; mapping theorem; drop theorem; metrizable locally convex spaces; maximality principle; quasi-ordered quasi-metrizable uniform space; Brezis-Browder order principle
UR - http://eudml.org/doc/17189
ER -
References
top- M. ALTMAN, Contractor directions, directional contractors and directional contractions for solving equations, Pacific J. Math. 62 (1976), 1-18. (1976) Zbl0352.47027MR0473939
- M. ALTMAN, An application of the method of contractor directions to nonlinear programming, Numer. Funct. Anal. and Optim. 1 (1979), 647-663. (1979) Zbl0444.49021MR0552245
- E. BISHOP R. R. PHELPS, The support functionals of a convex set, Proc. Symp. Pure Math., vol. VII (Convexity), pp. 27-36, Amer. Math. Soc., Providence R.I., 1963. (1963) MR0154092
- H. BRÉZIS F. E. BROWDER, A general principle on ordered sets in nonlinear functional analysis, Adv. in Math. 21 (1976), 355-364. (1976) MR0425688
- A. BRØNDSTED, On a lemma of Bishop and Phelps, Pacific J. Math. 55 (1974), 335-341. (1974) MR0380343
- A. BRØNDSTED, Fixed points and partial orders, Proc. Amer. Math. Soc. 60 (1976), 365-366. (1976) MR0417867
- A. BRØNDSTED, Common fixed points and partial orders, Proc. Amer. Math. Soc. 77 (1979), 365-368. (1979) MR0545597
- F. E. BROWDER, Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifolds, J. Funct. Anal. 8 (1971), 250-274. (1971) Zbl0228.47044MR0288638
- F. E. BROWDER, On a theorem of Caristi and Kirk, Fixed Point Theory and its Applications, pp. 23-27, Academic Press, New York, 1976. (1976) Zbl0379.54016MR0461474
- J. CARISTI, Fixed point theorems for mappings satisfying inwardness conditions, , Trans. Amer. Math. Soc. 215 (1976), 241-251. (1976) Zbl0305.47029MR0394329
- W. J. CRAMER W. O. RAY, Solvability of nonlinear operator equations, Pacific J. Math. 95 (1981), 37-50. (1981) MR0631657
- J. DANEŠ, A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. 6 (1972), 369-375. (1972) MR0317130
- D. DOWNING W. A. KIRK, A generalization of Caristi's theorem with applications to nonlinear mapping theory, Pacific J. Math. 69 (1977), 339-346. (1977) MR0440426
- I. EKELAND, Sur les problèmes variationals, C.R. Acad. Sci. Paris, 275 (1972), 1057-1059. (1972) MR0310670
- I. EKELAND, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. (1974) Zbl0286.49015MR0346619
- I. EKELAND, Nonconvex minimization problems, Bull. Amer. Math. Soc., N.S. 1 (1979), 443-474. (1979) Zbl0441.49011MR0526967
- R. B. HOLMES, Geometric functional analysis and its applications, Springer Verlag, New York, 1975. (1975) Zbl0336.46001MR0410335
- S. KASAHARA, On fixed points in partially ordered sets and Kirk-Caristi theorem, Math. Sem. Notes Kobe Univ. 3 (1975), 229-232. (1975) Zbl0341.54056MR0405396
- W. A. KIRK, Caristi's fixed point theorem and metric convexity, Colloq. Math. 36 (1976), 81-86. (1976) Zbl0353.53041MR0436111
- W. A. KIRK J. CARISTI, Mapping theorems in metric and Banach spaces, Bull. Acad. Pol. Sci. 23 (1975), 891-894. (1975) MR0385654
- C. KURATOWSKI, Topologie, vol. I, P.W.N., Warszawa, 1958. (1958) Zbl0078.14603MR0090795
- L. PASICKI, A short proof of the Caristi theorem, Comment. Math. 20 (1977/78), 427-428. (1977) MR0519379
- S. I. POHOZHAYEV, On the normal solvability for nonlinear operators, (Russian), Dokl. Akad. Nauk SSSR 184 (1969), 40-43. (1969)
- J. SIEGEL, A new proof of Caristi's fixed point theorem, Proc. Amer. Math. Soc. 66 (1977), 54-56. (1977) Zbl0369.54022MR0458403
- M. TURINICI, Maximal elements in partially ordered topological spaces and applications, An. St. Univ. "Al. I. Cuza" Iasi, 24 (1978), 259-264. (1978) MR0533753
- M. TURINICI, Function lipschitzian mappings on convex metric spaces, Comment. Math. Univ. Carolinae 22 (1981), 289-303. (1981) Zbl0497.54010MR0620364
- M. TURINICI, Local and global lipschitzian mappings on ordered metric spaces, Math. Nachrichten, to appear. Zbl0481.54008MR0638331
- M. TURINICI, Mapping theorems via variable drops in Banach spaces, Rend. Ist. Lombardo, to appear. Zbl0504.46008MR0698680
- C. URSESCU, Sur le contingent dans les espaces de Banach, Proc. Inst. Math. Iasi, pp. 183-184, Ed. Acad. RSR, Bucuresti, 1976. (1976) Zbl0372.46019MR0450943
- C. S. WONG, On a fixed point theorem of contractive type, Proc. Amer. Math. Soc. 57 (1976), 283-284. (1976) Zbl0329.54042MR0407826
- P. P. ZABREDCO M. A. KRASNOSELSKII, Solvability of nonlinear operator equations, (Russian), Funkc. Analiz i ego Prilož. 5 (1971), 42-44. (1971) MR0283646
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.