Fixed points for generalized nonexpansive mappings

Billy E. Rhoades; Kanhaya Lal Singh; J. H. M. Whitfield

Commentationes Mathematicae Universitatis Carolinae (1982)

  • Volume: 023, Issue: 3, page 443-451
  • ISSN: 0010-2628

How to cite

top

Rhoades, Billy E., Singh, Kanhaya Lal, and Whitfield, J. H. M.. "Fixed points for generalized nonexpansive mappings." Commentationes Mathematicae Universitatis Carolinae 023.3 (1982): 443-451. <http://eudml.org/doc/17193>.

@article{Rhoades1982,
author = {Rhoades, Billy E., Singh, Kanhaya Lal, Whitfield, J. H. M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {star-shaped metric spaces; normal structure; quasi-contraction; uniformly locally contractive mappings; fixed point theorems for continuous generalized nonexpansive mappings on convex metric spaces},
language = {eng},
number = {3},
pages = {443-451},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Fixed points for generalized nonexpansive mappings},
url = {http://eudml.org/doc/17193},
volume = {023},
year = {1982},
}

TY - JOUR
AU - Rhoades, Billy E.
AU - Singh, Kanhaya Lal
AU - Whitfield, J. H. M.
TI - Fixed points for generalized nonexpansive mappings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1982
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 023
IS - 3
SP - 443
EP - 451
LA - eng
KW - star-shaped metric spaces; normal structure; quasi-contraction; uniformly locally contractive mappings; fixed point theorems for continuous generalized nonexpansive mappings on convex metric spaces
UR - http://eudml.org/doc/17193
ER -

References

top
  1. Dale ALSPACH, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), 423-424. (1981) MR0612733
  2. L. B. CIRIC, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273. (1974) Zbl0291.54056MR0356011
  3. W. G. DOTSON, Jr., Fixed point theorems for non-expansive mappings in star-shaped subsets of Banach spaces, J. London Math. Soc. 4 (1972), 408-410. (1972) MR0296778
  4. M. EDELSTEIN, An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7-10. (1961) Zbl0096.17101MR0120625
  5. S. ITOH, Some fixed point theorems in metric spaces, Fundamenta Mathematicae 102 (1979), 109-117. (1979) Zbl0412.54054MR0525934
  6. M. A. KRASNOSEL'SKII G. M. VAINIKKO, al., Approximate solutions of operator equations, Wolters-Noordhoff publishing, Groningen 1972. (1972) MR0385655
  7. H. V. MACHODO, A characterization of convex subsets of normed spaces, Kodai Math. Sem. Rep. 25 (1973), 307-320. (1973) MR0326359
  8. S. A. NAIMPALLY K. L. SINGH, Fixed and common fixed points in convex metric spaces, preprint. 
  9. S. A. NAIMPALLY K. L. SINGH J. H. M. WHITFIELD, Fixed points in convex metric spaces, preprint. MR0759448
  10. B. E. RHOADES, Some fixed point theorems for generalized nonexpansive mappings, preprint. Zbl0497.47031MR1048011
  11. Robert SINE, Remarks on the example of Alspach, preprint. 
  12. L. A. TALMAN, Fixed points for condensing multifunctions in metric spaces with convex structure, Kodai Math. Sem. Rep. 29 (1977), 62-70. (1977) Zbl0423.54039MR0463985
  13. W. TAKAHASHI, A convexity in metric spaces and nonexpansive mappings I, Kodai Math. Sem. Rep. 22 (1970), 142-149. (1970) MR0267565

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.