Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.
Mathematische Zeitschrift (1985)
- Volume: 190, page 39-44
- ISSN: 0025-5874; 1432-1823
Access Full Article
topHow to cite
topGauduchon, Paul, and Balas, Andrew. "Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.." Mathematische Zeitschrift 190 (1985): 39-44. <http://eudml.org/doc/173607>.
@article{Gauduchon1985,
	author = {Gauduchon, Paul, Balas, Andrew},
	journal = {Mathematische Zeitschrift},
	keywords = {Kähler metric; Hermitian holomorphic sectional curvature; Hermitian metric; complex surface},
	pages = {39-44},
	title = {Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.},
	url = {http://eudml.org/doc/173607},
	volume = {190},
	year = {1985},
}
TY  - JOUR
AU  - Gauduchon, Paul
AU  - Balas, Andrew
TI  - Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.
JO  - Mathematische Zeitschrift
PY  - 1985
VL  - 190
SP  - 39
EP  - 44
KW  - Kähler metric; Hermitian holomorphic sectional curvature; Hermitian metric; complex surface
UR  - http://eudml.org/doc/173607
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
