Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.
Mathematische Zeitschrift (1985)
- Volume: 190, page 39-44
- ISSN: 0025-5874; 1432-1823
Access Full Article
topHow to cite
topGauduchon, Paul, and Balas, Andrew. "Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.." Mathematische Zeitschrift 190 (1985): 39-44. <http://eudml.org/doc/173607>.
@article{Gauduchon1985,
author = {Gauduchon, Paul, Balas, Andrew},
journal = {Mathematische Zeitschrift},
keywords = {Kähler metric; Hermitian holomorphic sectional curvature; Hermitian metric; complex surface},
pages = {39-44},
title = {Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.},
url = {http://eudml.org/doc/173607},
volume = {190},
year = {1985},
}
TY - JOUR
AU - Gauduchon, Paul
AU - Balas, Andrew
TI - Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.
JO - Mathematische Zeitschrift
PY - 1985
VL - 190
SP - 39
EP - 44
KW - Kähler metric; Hermitian holomorphic sectional curvature; Hermitian metric; complex surface
UR - http://eudml.org/doc/173607
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.