Equivalence of some geometric and related results of nonlinear functional analysis
Commentationes Mathematicae Universitatis Carolinae (1985)
- Volume: 026, Issue: 3, page 443-454
- ISSN: 0010-2628
Access Full Article
topHow to cite
topReferences
top- BRÉZIS H., BROWDER F. E., A general prinoiple on ordered sest in nonlinear functional analysis, Advances in Math. 21 (1976), 355-364. (1976) MR0425688
- CARISTI J., Fixed point theorms for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251. (1976) MR0394329
- CARISTI J., KIRK W. A., Mapping theorems in metric and Banach spaces, Bull. Acad. Polon. Sci. 23 (1975), 891-894. (1975) Zbl0313.47041MR0385654
- DANEŠ J., A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. 6 (1972), 369-375. (1972) MR0317130
- EKELAND I., On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. (1974) Zbl0286.49015MR0346619
- ZABREĬKO P. P., KRASNOSELSKIĬ M. A., On the solvability of nonlinear operator equations, Funkcional. Anal. i Přilož. 5 (1971), 42-44 (in Russian). (1971) MR0283646