A constructive proof of the Tychonoff's theorem for locales

Igor Kříž

Commentationes Mathematicae Universitatis Carolinae (1985)

  • Volume: 026, Issue: 3, page 619-630
  • ISSN: 0010-2628

How to cite

top

Kříž, Igor. "A constructive proof of the Tychonoff's theorem for locales." Commentationes Mathematicae Universitatis Carolinae 026.3 (1985): 619-630. <http://eudml.org/doc/17410>.

@article{Kříž1985,
author = {Kříž, Igor},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {frame; axiom of choice; compact locales; axiom of replacement},
language = {eng},
number = {3},
pages = {619-630},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A constructive proof of the Tychonoff's theorem for locales},
url = {http://eudml.org/doc/17410},
volume = {026},
year = {1985},
}

TY - JOUR
AU - Kříž, Igor
TI - A constructive proof of the Tychonoff's theorem for locales
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1985
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 026
IS - 3
SP - 619
EP - 630
LA - eng
KW - frame; axiom of choice; compact locales; axiom of replacement
UR - http://eudml.org/doc/17410
ER -

References

top
  1. J. BÉNABOU, Treillis locaux et paratopologies, Séminaire Ehresmann 1 (1957-58), exposé 2. (1957) MR0121774
  2. B. BANASCHEWSKI C. J. MULVEY, Stone-Čech compactification of locales, I, Houston J. Math. 6 (1980), 301-312. (1980) MR0597771
  3. C. H. DOWKER D. PAPERT, Quotient frames and subspaces, Proc. Lond. Math. Soc. 16 (1966), 275-296. (1966) MR0202648
  4. C. H. DOWKER D. PAPERT, On Urysohn's lemma, General Topology and its relations to Modern Analysis and Algebra II, Prague 1966, 111-114. (1966) MR0238744
  5. C. H. DOWKER D. STRAUSS, Sums in the category of frames, Houston J. Math. 3 (1976), 17-32. (1976) MR0442900
  6. J. R. ISBELL, Atomless parts of spaces, Math. Scand. 31 (1972), 5-32. (1972) Zbl0246.54028MR0358725
  7. P. T. JOHNSTONE, The point of pointless topology, Bull. Am. Math. Soc. 8 (1983), 41-43. (1983) Zbl0499.54002MR0682820
  8. P. T. JOHNSTONE, Tychonoff's theorem without the axiom of ohoice, Fund. Math. 113 (1981), 21-35. (1981) MR0641111
  9. A. JOYAL M. TIERNEY, An extension of the Galois Theory of Grothendieck, preprint. MR0756176
  10. J. L. KELLEY, The Tychonoff product theorem implies the axiom of ohoice, Fund. Math. 37 (1950), 75-76. (1950) MR0039982
  11. H. SIMMONS, A framework for topology, Proc. Wroclaw Logic Conference 1977, North-Holland, 1978, 239-251. (1977) MR0519819
  12. A. N. TYCHONOFF, Über die topologische Erweiterung von Räumen, Math. Ann. 102 (1930), 544-561. (1930) MR1512595

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.