A Dowker group

Klaas Pieter Hart; Heikki J. K. Junnila; Jan van Mill

Commentationes Mathematicae Universitatis Carolinae (1985)

  • Volume: 026, Issue: 4, page 799-810
  • ISSN: 0010-2628

How to cite

top

Hart, Klaas Pieter, Junnila, Heikki J. K., and van Mill, Jan. "A Dowker group." Commentationes Mathematicae Universitatis Carolinae 026.4 (1985): 799-810. <http://eudml.org/doc/17427>.

@article{Hart1985,
author = {Hart, Klaas Pieter, Junnila, Heikki J. K., van Mill, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {counterexample; P-space; ZFC; normal topological group; countably paracompact; Dowker space; Dowker group},
language = {eng},
number = {4},
pages = {799-810},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A Dowker group},
url = {http://eudml.org/doc/17427},
volume = {026},
year = {1985},
}

TY - JOUR
AU - Hart, Klaas Pieter
AU - Junnila, Heikki J. K.
AU - van Mill, Jan
TI - A Dowker group
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1985
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 026
IS - 4
SP - 799
EP - 810
LA - eng
KW - counterexample; P-space; ZFC; normal topological group; countably paracompact; Dowker space; Dowker group
UR - http://eudml.org/doc/17427
ER -

References

top
  1. A. DOW J.van MILL, An extremally disconnected Dowker space, Proc. Amer. Math. Soc. 86 (1982), 669-672. (1982) MR0674103
  2. R. ENGELKING, General Topology, PWN Warszawa (1977). (1977) Zbl0373.54002MR0500780
  3. K. P. HART, Strong collectionwise normality and M. E. Rudin's Dowker space, Proc. Amer. Math. Soc. 85 (1981), 802-806. (1981) Zbl0468.54011MR0630058
  4. K. P. HART J. van MILL, A separable normal topological group which is not Lindelöf, Top. Appl. (to appear). MR0804040
  5. K. KUNEN, Set Theory, North-Holland, Amsterdam (1980). (1980) Zbl0443.03021MR0597342
  6. M. E. RUDIN, A normal space X for which X x I is not normal, , Fund. Math. 73 (1971), 179-186. (1971) MR0293583
  7. S. W. WILLIAMS, Box products in Handbook of Set-theoretic Topology, North-Holland, Amsterdam (1984). (1984) MR0776623

NotesEmbed ?

top

You must be logged in to post comments.