Minimal convex-valued weak USCO correspondences and the Radon-Nikodým property
Commentationes Mathematicae Universitatis Carolinae (1987)
- Volume: 028, Issue: 2, page 353-376
- ISSN: 0010-2628
Access Full Article
topHow to cite
topJokl, Luděk. "Minimal convex-valued weak$^\ast $ USCO correspondences and the Radon-Nikodým property." Commentationes Mathematicae Universitatis Carolinae 028.2 (1987): 353-376. <http://eudml.org/doc/17550>.
@article{Jokl1987,
author = {Jokl, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {minimal convex valued weak upper semi-continuous compact valued correspondences; closed convex sets with the Radon-Nikodým property},
language = {eng},
number = {2},
pages = {353-376},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Minimal convex-valued weak$^\ast $ USCO correspondences and the Radon-Nikodým property},
url = {http://eudml.org/doc/17550},
volume = {028},
year = {1987},
}
TY - JOUR
AU - Jokl, Luděk
TI - Minimal convex-valued weak$^\ast $ USCO correspondences and the Radon-Nikodým property
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1987
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 028
IS - 2
SP - 353
EP - 376
LA - eng
KW - minimal convex valued weak upper semi-continuous compact valued correspondences; closed convex sets with the Radon-Nikodým property
UR - http://eudml.org/doc/17550
ER -
References
top- E. Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47. (1968) Zbl0162.17501MR0231199
- E. Asplund R. T. Rockafellar, Gradients of convex functions, Tгans. Ameг. Math. Soc. 139 (1969), 443-467 (1969) MR0240621
- E. Bishop R. R. Phelps, A pгoof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98 (1961) MR0123174
- R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Mathematics, Vol. 993, Springer-Verlag . Zbl0512.46017MR0704815
- A. Brøndsted R. T. Rockafellar, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc. 16 (1965), 605-611. (1965) MR0178103
- J. P. R. Christensen, Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set valued mappings, Proc. Amer. Math. Soc. 86 (1982), 649-655. (1982) MR0674099
- J. P. R. Christensen P. S. Kendeгov, Dense strong continuity of mappings and the Radon-Nikodým property, Math. Scand. 54 (1984), 70-78. (1984) MR0753064
- J. B. Collieг, The dual of a space with the Radon-Nikodým property, Pacific J. Math. 64 (1976), 103-106. (1976) MR0425580
- S. Fitzpatrick, Monotone operatoгs and dentability, Bull. Austral. Math. Soc. 18 (1978), 77-82. (1978) MR0482395
- S. Fitzpatгick, Separately related sets and the Radon-Nikodým property, Illinois J. Math. 29 (1985), 229-247. (1985)
- J. R. Giles, On the characterization of Asplund spaces, J. Austral. Math. Soc. (Series A) 32 (1982), 134-144. (1982) MR0643437
- J. R. Giles, Convex Analysis with Aplication in Differentiation of Convex Functions, Pitman, London, 1982 MR0650456
- L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Arkiv für Math. 3 (1954), 181-186. (1954) MR0068112
- A. D. Ioffe V. M. Tihomirov, Theory of Extremal Problems, North Holland, Amsterdam, 1979. (1979) MR0528295
- L. Jokl, Některé aspekty konvexni analyzy a teorie Asplundových prostorů (Some aspects of convex analysis and the theory of Asplund spaces), CSc - thesis, Prague 1985. (1985)
- L. Jokl, Upper semicontinuous compact valued correspondences and Asplund spaces, to appear.
- L. Jokl, Convex-velued weak * usco correspondences, Comment. Math. Univ. Carolinae, 28, 1 (1987). (1987) MR0904760
- P. S. Kenderov, Semi-continuity of set-valued monotone mappings, Fundamenta Mathematicae, LXXXVIII (1975), 61-69. (1975) Zbl0307.47049MR0380723
- P. S. Kenderov, Multivalued monotone mappings are almost everywhere single-valued, Studia Mathematica, T. LVI. (1976), 199-203. (1976) Zbl0341.47036MR0428122
- P. S. Kenderov, Monotone operators in Asplund spaces, C. R. Acad. Sci. Bulgare 30 (1977), 963-964. (1977) Zbl0377.47036MR0463981
- P. S. Kenderov, Most of the optimization problems have unique solution, International Series of Numerical Mathematics. Vol. 72, 1984, Birkhauser Verlag Basel, 203-216. (1984) Zbl0541.49006MR0882205
- J. J. Moreau, Semi-continuity du sous-gradient d'une fonctionelle, C. R. Paris 260 (1965), 1067-1070. (1965) MR0173936
- I. Namioka R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-750. (1975) MR0390721
- R. R. Phelps, Dentability and extreme points in Banach spaces, J. Functional Anal. 17 (1974), 78-90. (1974) Zbl0287.46026MR0352941
- R. R. Phelps, Differentiability of Convex Functions on Banach Spaces, Lecture Notes, University London 1978. (1978)
- C. Stegall, Gâteaux differentiation of functions on a certain class of Banach spaces, Funct. Anal. Surveys and Recent Results, Amsterdam 1984, 35-45. (1984) Zbl0548.46037MR0761371
- C. Stegall, More Gâteaux differentiability spaces, Banach Spaces, Proceedings, Missouri 1984, Lecture Notes in Mathematics, Vol. 1166, Berlin 1985. (1984) MR0827772
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.