Minimal convex-valued weak * USCO correspondences and the Radon-Nikodým property

Luděk Jokl

Commentationes Mathematicae Universitatis Carolinae (1987)

  • Volume: 028, Issue: 2, page 353-376
  • ISSN: 0010-2628

How to cite

top

Jokl, Luděk. "Minimal convex-valued weak$^\ast $ USCO correspondences and the Radon-Nikodým property." Commentationes Mathematicae Universitatis Carolinae 028.2 (1987): 353-376. <http://eudml.org/doc/17550>.

@article{Jokl1987,
author = {Jokl, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {minimal convex valued weak upper semi-continuous compact valued correspondences; closed convex sets with the Radon-Nikodým property},
language = {eng},
number = {2},
pages = {353-376},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Minimal convex-valued weak$^\ast $ USCO correspondences and the Radon-Nikodým property},
url = {http://eudml.org/doc/17550},
volume = {028},
year = {1987},
}

TY - JOUR
AU - Jokl, Luděk
TI - Minimal convex-valued weak$^\ast $ USCO correspondences and the Radon-Nikodým property
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1987
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 028
IS - 2
SP - 353
EP - 376
LA - eng
KW - minimal convex valued weak upper semi-continuous compact valued correspondences; closed convex sets with the Radon-Nikodým property
UR - http://eudml.org/doc/17550
ER -

References

top
  1. E. Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47. (1968) Zbl0162.17501MR0231199
  2. E. Asplund R. T. Rockafellar, Gradients of convex functions, Tгans. Ameг. Math. Soc. 139 (1969), 443-467 (1969) MR0240621
  3. E. Bishop R. R. Phelps, A pгoof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98 (1961) MR0123174
  4. R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Mathematics, Vol. 993, Springer-Verlag . Zbl0512.46017MR0704815
  5. A. Brøndsted R. T. Rockafellar, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc. 16 (1965), 605-611. (1965) MR0178103
  6. J. P. R. Christensen, Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set valued mappings, Proc. Amer. Math. Soc. 86 (1982), 649-655. (1982) MR0674099
  7. J. P. R. Christensen P. S. Kendeгov, Dense strong continuity of mappings and the Radon-Nikodým property, Math. Scand. 54 (1984), 70-78. (1984) MR0753064
  8. J. B. Collieг, The dual of a space with the Radon-Nikodým property, Pacific J. Math. 64 (1976), 103-106. (1976) MR0425580
  9. S. Fitzpatrick, Monotone operatoгs and dentability, Bull. Austral. Math. Soc. 18 (1978), 77-82. (1978) MR0482395
  10. S. Fitzpatгick, Separately related sets and the Radon-Nikodým property, Illinois J. Math. 29 (1985), 229-247. (1985) 
  11. J. R. Giles, On the characterization of Asplund spaces, J. Austral. Math. Soc. (Series A) 32 (1982), 134-144. (1982) MR0643437
  12. J. R. Giles, Convex Analysis with Aplication in Differentiation of Convex Functions, Pitman, London, 1982 MR0650456
  13. L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Arkiv für Math. 3 (1954), 181-186. (1954) MR0068112
  14. A. D. Ioffe V. M. Tihomirov, Theory of Extremal Problems, North Holland, Amsterdam, 1979. (1979) MR0528295
  15. L. Jokl, Některé aspekty konvexni analyzy a teorie Asplundových prostorů (Some aspects of convex analysis and the theory of Asplund spaces), CSc - thesis, Prague 1985. (1985) 
  16. L. Jokl, Upper semicontinuous compact valued correspondences and Asplund spaces, to appear. 
  17. L. Jokl, Convex-velued weak * usco correspondences, Comment. Math. Univ. Carolinae, 28, 1 (1987). (1987) MR0904760
  18. P. S. Kenderov, Semi-continuity of set-valued monotone mappings, Fundamenta Mathematicae, LXXXVIII (1975), 61-69. (1975) Zbl0307.47049MR0380723
  19. P. S. Kenderov, Multivalued monotone mappings are almost everywhere single-valued, Studia Mathematica, T. LVI. (1976), 199-203. (1976) Zbl0341.47036MR0428122
  20. P. S. Kenderov, Monotone operators in Asplund spaces, C. R. Acad. Sci. Bulgare 30 (1977), 963-964. (1977) Zbl0377.47036MR0463981
  21. P. S. Kenderov, Most of the optimization problems have unique solution, International Series of Numerical Mathematics. Vol. 72, 1984, Birkhauser Verlag Basel, 203-216. (1984) Zbl0541.49006MR0882205
  22. J. J. Moreau, Semi-continuity du sous-gradient d'une fonctionelle, C. R. Paris 260 (1965), 1067-1070. (1965) MR0173936
  23. I. Namioka R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-750. (1975) MR0390721
  24. R. R. Phelps, Dentability and extreme points in Banach spaces, J. Functional Anal. 17 (1974), 78-90. (1974) Zbl0287.46026MR0352941
  25. R. R. Phelps, Differentiability of Convex Functions on Banach Spaces, Lecture Notes, University London 1978. (1978) 
  26. C. Stegall, Gâteaux differentiation of functions on a certain class of Banach spaces, Funct. Anal. Surveys and Recent Results, Amsterdam 1984, 35-45. (1984) Zbl0548.46037MR0761371
  27. C. Stegall, More Gâteaux differentiability spaces, Banach Spaces, Proceedings, Missouri 1984, Lecture Notes in Mathematics, Vol. 1166, Berlin 1985. (1984) MR0827772

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.