Random functional-differential inclusions with nonconvex right-hand side in a Banach space

Nikolaos S. Papageorgiou

Commentationes Mathematicae Universitatis Carolinae (1987)

  • Volume: 028, Issue: 4, page 649-654
  • ISSN: 0010-2628

How to cite

top

Papageorgiou, Nikolaos S.. "Random functional-differential inclusions with nonconvex right-hand side in a Banach space." Commentationes Mathematicae Universitatis Carolinae 028.4 (1987): 649-654. <http://eudml.org/doc/17579>.

@article{Papageorgiou1987,
author = {Papageorgiou, Nikolaos S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {random solutions for stochastic functional-differential inclusions; Hausdorff measure of noncompactness; measurable selection method},
language = {eng},
number = {4},
pages = {649-654},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Random functional-differential inclusions with nonconvex right-hand side in a Banach space},
url = {http://eudml.org/doc/17579},
volume = {028},
year = {1987},
}

TY - JOUR
AU - Papageorgiou, Nikolaos S.
TI - Random functional-differential inclusions with nonconvex right-hand side in a Banach space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1987
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 028
IS - 4
SP - 649
EP - 654
LA - eng
KW - random solutions for stochastic functional-differential inclusions; Hausdorff measure of noncompactness; measurable selection method
UR - http://eudml.org/doc/17579
ER -

References

top
  1. A. BRESSAN, On differential relations with lower continuous right hand side. An existence theorem, J. Diff. Equations 37 (1980), 89-97. (1980) Zbl0418.34017MR0583341
  2. C. CASTAING, Rafle par un convexe aleatoire à variation continue à droite, Séminaire d'Analyse Convexe, Montpellier 1975, expose no 15. (1975) Zbl0353.46032MR0512203
  3. C. CASTAING M. VALADIER, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math., Vol. 580, Springer, Berlin (1977). (1977) MR0467310
  4. K. DEIMLING, Sample solutions of stochastic ordinary differential equations, Stoch. Anal. Appl. 3 (1985), 15-21. (1985) Zbl0555.60036MR0783042
  5. N. DUNFORD J. SCHWARTZ, Linear Operators, Vol. I, Wiley, New York (1958). (1958) 
  6. C. HIMMELBERG F. Van LECK, Lipschitzian generalized differential equations, Rend. Sem. Mat. Univ. Padova 48 (1972), 156-169. (1972) MR0340692
  7. S. ITOH, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261-173. (1979) Zbl0407.60069MR0528687
  8. G. LADDE V. LAKSHMIKANTHAM, Random Differential Inequalities, Academic Press, New York (1980). (1980) MR0618464
  9. S. LOJASIEWICZ, The existence of solutions for lower semicontinuous orientor fields, Bull. Polish Acad. Sci. 28 (1980), 483-487. (1980) Zbl0483.49028MR0629022
  10. A. NOWAK, Applications of random fixed point theorems in the theory of generalized random differential equations, Bull. Polish Acad. Sci. 34 (1986), 487-494. (1986) Zbl0617.60059MR0874895
  11. N. S. PAPAGEORGIOU, Random differential inclusions in Banach spaces, J. Diff. Equations 65 (1986), 287-303. (1986) Zbl0615.34006MR0865064
  12. N. S. PAPAGEORGIOU, On measurable multifunctions with applications to random generalized equations, Math. Japonica 32 (1987), 701-727. (1987) MR0914749
  13. N. S. PAPAGEORGIOU, On the existence of solutions of random functional-differential equations in Banach spaces, J. Math. Anal. Appl. (to appear). 
  14. N. S. PAPAGEORGIOU, Functional-differential inclusions in Banach spaces with nonconvex right hand side, Funkcialaj Ekvacioj (to appear). Zbl0698.34067MR1006092
  15. PHAN VAN CU0NG, Existence of solutions for random multivalued Volterra integral equations, J. Integral Equations 7 (1984), 143-173. (1984) MR0756552
  16. M.-F. SAINT-BEUVE, On the extensions of von Neumann-Aumann's theorem, J. Funct. Anal. 17 (1974), 112-129. (1974) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.