Commutative Moufang loops corresponding to linear quasigroups

Petr Němec

Commentationes Mathematicae Universitatis Carolinae (1988)

  • Volume: 029, Issue: 2, page 303-308
  • ISSN: 0010-2628

How to cite

top

Němec, Petr. "Commutative Moufang loops corresponding to linear quasigroups." Commentationes Mathematicae Universitatis Carolinae 029.2 (1988): 303-308. <http://eudml.org/doc/17639>.

@article{Němec1988,
author = {Němec, Petr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {linear quasigroups; trimedial quasigroups; automorphisms; commutative Moufang loops; arithmetical forms},
language = {eng},
number = {2},
pages = {303-308},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Commutative Moufang loops corresponding to linear quasigroups},
url = {http://eudml.org/doc/17639},
volume = {029},
year = {1988},
}

TY - JOUR
AU - Němec, Petr
TI - Commutative Moufang loops corresponding to linear quasigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1988
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 029
IS - 2
SP - 303
EP - 308
LA - eng
KW - linear quasigroups; trimedial quasigroups; automorphisms; commutative Moufang loops; arithmetical forms
UR - http://eudml.org/doc/17639
ER -

References

top
  1. R. H. BRUCK, A survey of binary systems, Springer-Verlag, Berlin - Göttingen - Heidelberg, 1958. (1958) Zbl0081.01704MR0093552
  2. T. KEPKA, Structure of triabelian quasigroups, Comment. Math. Univ. Caroline 17 (1976), 229-240. (1976) Zbl0338.20097MR0407182
  3. T. KEPKA, Hamiltonian quasimodules and trimedial quasigroups, Acta Univ. Carolinae Math. Phys. 26, 1 (1985), 11-20. (1985) Zbl0595.20071MR0830262
  4. P. NĚMEC, Quasigroups linear over commutative Moufang loops, (to appear in Rivista Mat. Pura ed Appl.) MR1068887
  5. P. NĚMEC, Arithmetical forms of quasigroups, Comment. Math. Univ. Carolinae 29 (1988), 295-302. (1988) MR0957399
  6. J.-P. SOUBLIN, Etude algébrique de la notion de moyenne, J. Math. Pures et Appl. 50 (1971), 53-264. (1971) Zbl0215.40401MR0291342

NotesEmbed ?

top

You must be logged in to post comments.