The class of -spaces is invariant of closed mappings with Lindelöf fibres

Shu Hao Sun

Commentationes Mathematicae Universitatis Carolinae (1988)

  • Volume: 029, Issue: 2, page 351-354
  • ISSN: 0010-2628

How to cite

top

Sun, Shu Hao. "The class of $\aleph $-spaces is invariant of closed mappings with Lindelöf fibres." Commentationes Mathematicae Universitatis Carolinae 029.2 (1988): 351-354. <http://eudml.org/doc/17642>.

@article{Sun1988,
author = {Sun, Shu Hao},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {-spaces; closed s-image},
language = {eng},
number = {2},
pages = {351-354},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The class of $\aleph $-spaces is invariant of closed mappings with Lindelöf fibres},
url = {http://eudml.org/doc/17642},
volume = {029},
year = {1988},
}

TY - JOUR
AU - Sun, Shu Hao
TI - The class of $\aleph $-spaces is invariant of closed mappings with Lindelöf fibres
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1988
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 029
IS - 2
SP - 351
EP - 354
LA - eng
KW - -spaces; closed s-image
UR - http://eudml.org/doc/17642
ER -

References

top
  1. L. FOGED, Characterizations of χ -spaces, Pacific J. Math. 110 (1984), 59-63. (1984) MR0722737
  2. L. FOGED, Normality in k- and χ -spaces, Top. and Appl. 22 (1986), 223-240. (1986) MR0842657
  3. J. GUTHRIE, Mapping spaces and cs-networks, Pacific J. Math. 47 (1973), 465-471. (1973) Zbl0253.54025MR0339058
  4. P. O'MEARA, A new class of topological spaces, Dissertation, University of Alberta (1966). (1966) 
  5. P. O'MEARA, On paracompactness in function spaces with the compact-open topology, Proc. Amer. Math. Soc. 29 (1971), 183-189. (1971) Zbl0214.21105MR0276919
  6. F. SIWIEC J. NAGATA, A note on nets and metrization, Proc. Japan Acad. 44 (1968), 623-627. (1968) MR0242116
  7. Y. TANAKA, A characterization for the products of k- and χ -spaces and related results, Proc. Amer. Math.Soc. 59 (1976), 149-155. (1976) MR0415580

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.