Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. II.
Tadeusz Kuczumow; Adam Stachura
Commentationes Mathematicae Universitatis Carolinae (1988)
- Volume: 029, Issue: 3, page 403-410
- ISSN: 0010-2628
Access Full Article
topHow to cite
topReferences
top- T. FRANZONI E. VESENTINI, Holomorphic maps and invariant distances, North-Holland, Amsterdam, 1980. (1980) MR0563329
- A. GENEL J. LINDENSTRAUSS, An example concerning fixed points, Israel J. Math. 22 (1975), 81-85. (1975) MR0390847
- K. GOEBEL T. SĘK0WSKI A. STACHURA, Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Analysis 4 (1980), 1011-1021. (1980) MR0586863
- K. GOEBEL W. A. KIRK, Iteration processes for nonexpansive mappings, Contemporary Mathematics 21 (1983), 115-123. (1983) MR0729507
- T. L. HAYDEN T. J. SUFFRIOGE, Biholomorphic maps in Hilbert space have a fixed point, Pacif. J. Math. 38 (1971), 419-422. (1971) MR0305158
- E. HELLY, Über Mengen konvexer Körper mit gemeinschaftlichen Pubkten, Über. Deutsch. Math. Verein 32 (1923), 175-176. (1923)
- S. KOBAYASHI, Invariant distances for projective structures, Istituto Nazionale di Alta Matematica Francesco Severi, XXVI (1982), 153-161. (1982) Zbl0482.51015MR0663030
- T. KUCZUMOW, Fixed points of holomorphic mappings in the Hilbert ball, Colloq. Math., in print. Zbl0674.47039MR0964327
- T. KUCZUMOW A. STACHURA, Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. Part I, Comment. Math. Univ. Carolinae 29 (1988), 399-402. (1988) MR0972824
- S. REICH, Averaged mappings in the Hilbert ball, J. Math. Anal. Appl. 109(1985), 199-206. (1985) Zbl0588.47061MR0796053
- I. J. SCHOENBERG, On a theorem of Kirszbraun and Valentine, Amer. Math. Monthly 60 (1953), 620-622. (1953) MR0058232
- T. J. SUFFRIDGE, Common fixed points of commuting holomorphic mappings, The Michigan Math. 3. 21 (1975), 309-314. (1975) MR0367661