Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. II.

Tadeusz Kuczumow; Adam Stachura

Commentationes Mathematicae Universitatis Carolinae (1988)

  • Volume: 029, Issue: 3, page 403-410
  • ISSN: 0010-2628

How to cite

top

Kuczumow, Tadeusz, and Stachura, Adam. "Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. II.." Commentationes Mathematicae Universitatis Carolinae 029.3 (1988): 403-410. <http://eudml.org/doc/17653>.

@article{Kuczumow1988,
author = {Kuczumow, Tadeusz, Stachura, Adam},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {hyperbolic metric; nonexpansive map; extensions; Kirzbraun theorem; isometries},
language = {eng},
number = {3},
pages = {403-410},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. II.},
url = {http://eudml.org/doc/17653},
volume = {029},
year = {1988},
}

TY - JOUR
AU - Kuczumow, Tadeusz
AU - Stachura, Adam
TI - Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. II.
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1988
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 029
IS - 3
SP - 403
EP - 410
LA - eng
KW - hyperbolic metric; nonexpansive map; extensions; Kirzbraun theorem; isometries
UR - http://eudml.org/doc/17653
ER -

References

top
  1. T. FRANZONI E. VESENTINI, Holomorphic maps and invariant distances, North-Holland, Amsterdam, 1980. (1980) MR0563329
  2. A. GENEL J. LINDENSTRAUSS, An example concerning fixed points, Israel J. Math. 22 (1975), 81-85. (1975) MR0390847
  3. K. GOEBEL T. SĘK0WSKI A. STACHURA, Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Analysis 4 (1980), 1011-1021. (1980) MR0586863
  4. K. GOEBEL W. A. KIRK, Iteration processes for nonexpansive mappings, Contemporary Mathematics 21 (1983), 115-123. (1983) MR0729507
  5. T. L. HAYDEN T. J. SUFFRIOGE, Biholomorphic maps in Hilbert space have a fixed point, Pacif. J. Math. 38 (1971), 419-422. (1971) MR0305158
  6. E. HELLY, Über Mengen konvexer Körper mit gemeinschaftlichen Pubkten, Über. Deutsch. Math. Verein 32 (1923), 175-176. (1923) 
  7. S. KOBAYASHI, Invariant distances for projective structures, Istituto Nazionale di Alta Matematica Francesco Severi, XXVI (1982), 153-161. (1982) Zbl0482.51015MR0663030
  8. T. KUCZUMOW, Fixed points of holomorphic mappings in the Hilbert ball, Colloq. Math., in print. Zbl0674.47039MR0964327
  9. T. KUCZUMOW A. STACHURA, Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. Part I, Comment. Math. Univ. Carolinae 29 (1988), 399-402. (1988) MR0972824
  10. S. REICH, Averaged mappings in the Hilbert ball, J. Math. Anal. Appl. 109(1985), 199-206. (1985) Zbl0588.47061MR0796053
  11. I. J. SCHOENBERG, On a theorem of Kirszbraun and Valentine, Amer. Math. Monthly 60 (1953), 620-622. (1953) MR0058232
  12. T. J. SUFFRIDGE, Common fixed points of commuting holomorphic mappings, The Michigan Math. 3. 21 (1975), 309-314. (1975) MR0367661

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.