An elementary proof of Noble's theorem on normality of powers

Ryszard Engelking

Commentationes Mathematicae Universitatis Carolinae (1988)

  • Volume: 029, Issue: 4, page 677-678
  • ISSN: 0010-2628

How to cite

top

Engelking, Ryszard. "An elementary proof of Noble's theorem on normality of powers." Commentationes Mathematicae Universitatis Carolinae 029.4 (1988): 677-678. <http://eudml.org/doc/17679>.

@article{Engelking1988,
author = {Engelking, Ryszard},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {compactness; Cartesian product; normality},
language = {eng},
number = {4},
pages = {677-678},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An elementary proof of Noble's theorem on normality of powers},
url = {http://eudml.org/doc/17679},
volume = {029},
year = {1988},
}

TY - JOUR
AU - Engelking, Ryszard
TI - An elementary proof of Noble's theorem on normality of powers
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1988
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 029
IS - 4
SP - 677
EP - 678
LA - eng
KW - compactness; Cartesian product; normality
UR - http://eudml.org/doc/17679
ER -

References

top
  1. S. P. FRANKLIN R. C. WALKER, Normality of powers implies compactness, Proc. Amer. Math. Soc. 36 (1972), 295-296. (1972) MR0415571
  2. M. KATĚTOV, Complete normality of Cartesian products, Fund. Math. 36 (1948), 271-274. (1948) MR0027501
  3. J. KEESLING, Normality and infinite product spaces, Adv. in Math. 9 (1972), 90-92. (1972) Zbl0243.54003MR0309043
  4. N. NOBLE, Products with closed projections II, Trans. Amer. Math. Soc. 160 (1971), 169-183. (1971) Zbl0233.54004MR0283749
  5. L. POLKOWSKI, On N. Noble's theorems concerning powers of spaces and mappings, Coll. Math. 41 (1979), 215-217. (1979) Zbl0442.54009MR0591927
  6. A. H. STONE, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977-982. (1948) Zbl0032.31403MR0026802

NotesEmbed ?

top

You must be logged in to post comments.