On Baire approximations of normal integrands

Anna Kucia; Andrzej Nowak

Commentationes Mathematicae Universitatis Carolinae (1989)

  • Volume: 030, Issue: 2, page 373-376
  • ISSN: 0010-2628

How to cite

top

Kucia, Anna, and Nowak, Andrzej. "On Baire approximations of normal integrands." Commentationes Mathematicae Universitatis Carolinae 030.2 (1989): 373-376. <http://eudml.org/doc/17747>.

@article{Kucia1989,
author = {Kucia, Anna, Nowak, Andrzej},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {normal integrand; jointly measurable function; applications to optimization; Baire approximation theorem},
language = {eng},
number = {2},
pages = {373-376},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On Baire approximations of normal integrands},
url = {http://eudml.org/doc/17747},
volume = {030},
year = {1989},
}

TY - JOUR
AU - Kucia, Anna
AU - Nowak, Andrzej
TI - On Baire approximations of normal integrands
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1989
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 030
IS - 2
SP - 373
EP - 376
LA - eng
KW - normal integrand; jointly measurable function; applications to optimization; Baire approximation theorem
UR - http://eudml.org/doc/17747
ER -

References

top
  1. Ash R. B., Real Analysis and Probability, Academic Press, New York, 1972. (1972) MR0435320
  2. Christensen J. P. R., Topology and Borel Structure, North Holland, Amsterdam, 1974. (1974) Zbl0273.28001MR0348724
  3. Dynkin E. B., Stochastic concave dynamic programming, Mat. Sb. 87 (1972), 490-503; English transl.: Math. USSR-Sb. 16 (1972), 501-515. (1972) MR0300629
  4. Kucia A., Carathéodory type selectors, submitted. Zbl0593.54018
  5. Miller D. E., Borel selectors for separated quotients, Pacific J. Math. 91 (1980), 187-198. (1980) Zbl0477.54008MR0612898
  6. Sarbadhikari H., Srivastava S. M., Random Tietze and Dugundji extension theorems, J. Math. Anal. Appl. (to appear). 
  7. Schäl M., A selection theorem for optimization problems, Arch. Math. 25 (1974), 219-224. (1974) MR0346632
  8. Schäl M., Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal, Z. Wahrsch. Verw. Gebiete 32 (1975), 179-196. (1975) MR0378841
  9. Schäl M., On dynamic programming: compactness of the space of policies, Stochastic Process. Appl. 3 (1975), 345-364. (1975) MR0386706
  10. Schäl M., Addendum to [7], [8] and [9], Technical Report, Univ. Bonn, 1977. (1977) 
  11. Ślęzak W., On Carathéodory's selectors for multifunctions with values in S-contractible spaces, Problemy Math. 7 (1986), 21-34. (1986) Zbl0619.28007MR0871801
  12. Wagner D. H., Survey of measurable selection theorems, SIAM J. Control 15 (1977), 859-903. (1977) Zbl0407.28006MR0486391

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.