On normal forms of Laplacian and its iterations in harmonic spaces

Masanori Kôzaki; Hidekichi Sumi

Commentationes Mathematicae Universitatis Carolinae (1989)

  • Volume: 030, Issue: 4, page 795-802
  • ISSN: 0010-2628

How to cite

top

Kôzaki, Masanori, and Sumi, Hidekichi. "On normal forms of Laplacian and its iterations in harmonic spaces." Commentationes Mathematicae Universitatis Carolinae 030.4 (1989): 795-802. <http://eudml.org/doc/17795>.

@article{Kôzaki1989,
author = {Kôzaki, Masanori, Sumi, Hidekichi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Euclidean Laplacians; curvature tensor; mean value operators; harmonic manifold; recurrence formula},
language = {eng},
number = {4},
pages = {795-802},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On normal forms of Laplacian and its iterations in harmonic spaces},
url = {http://eudml.org/doc/17795},
volume = {030},
year = {1989},
}

TY - JOUR
AU - Kôzaki, Masanori
AU - Sumi, Hidekichi
TI - On normal forms of Laplacian and its iterations in harmonic spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1989
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 030
IS - 4
SP - 795
EP - 802
LA - eng
KW - Euclidean Laplacians; curvature tensor; mean value operators; harmonic manifold; recurrence formula
UR - http://eudml.org/doc/17795
ER -

References

top
  1. Besse A. L., Manifolds all of whose Geodesies are Closed, Springer-Verlag, Berlin Heidelberg New York, 1978. (1978) Zbl0387.53010MR0496885
  2. Gray A., Willmore T. J., Mean-value theorems for Riemannian manifolds, Proc. Roy. Soc. Edinburgh 92 A (1982), 343-364. (1982) Zbl0495.53040MR0677493
  3. Kowalski O., The second mean-value operator on Riemannian manifolds, in Proceedings of the CSSR-GDR-Polish Conference on Differential Geometry and its Applications, Nové Město 1980, pp. 33-45, Universita Karlova Praha, 1982. (1980) MR0663211
  4. Kowalski O., Normal forms of the Laplacian and its iterations in the symmetric spaces of rank one, Simon Stevin, Quart. J. Pure. Applied Math. 57 (1983), 215-223. (1983) Zbl0518.53053MR0721434
  5. Kôzaki M., On mean value theorems for small geodesic spheres in Riemannian manifolds, preprint. Zbl0782.53038MR1179316
  6. Kôzaki M., Ogura Y., On geometric and stochastic mean values for small geodesic spheres in Riemannian manifolds, Tsukuba J. Math. 11 (1987), 131-145. (1987) Zbl0641.53045MR0899727
  7. Ruse H. S., Walker A. G., Willmore T. J., Harmonic Spaces, Edizioni Cremonese, Roma, 1961. (1961) Zbl0134.39202MR0142062
  8. Watanabe Y., On the characteristic function of harmonic Kählerian spaces, Tohoku Math. J. 27 (1975), 12-24. (1975) Zbl0311.53068MR0365439

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.