Wiener's test of thinness in potential theory

Miroslav Brzezina

Commentationes Mathematicae Universitatis Carolinae (1990)

  • Volume: 031, Issue: 2, page 227-232
  • ISSN: 0010-2628

How to cite

top

Brzezina, Miroslav. "Wiener's test of thinness in potential theory." Commentationes Mathematicae Universitatis Carolinae 031.2 (1990): 227-232. <http://eudml.org/doc/17840>.

@article{Brzezina1990,
author = {Brzezina, Miroslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {regularity; capacity; Wiener type test; thinness},
language = {eng},
number = {2},
pages = {227-232},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Wiener's test of thinness in potential theory},
url = {http://eudml.org/doc/17840},
volume = {031},
year = {1990},
}

TY - JOUR
AU - Brzezina, Miroslav
TI - Wiener's test of thinness in potential theory
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1990
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 031
IS - 2
SP - 227
EP - 232
LA - eng
KW - regularity; capacity; Wiener type test; thinness
UR - http://eudml.org/doc/17840
ER -

References

top
  1. H. Bauer, Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Mathematics 22, Springer-Verlag, Berlin, 1966. (1966) Zbl0142.38402MR0210916
  2. J. Bliedtner W. Hansen, Simplicial cones in potential theory, Inventiones Math. 29 (1975), 83-110. (1975) MR0387630
  3. J. Bliedtner W. Hansen, Potential theory, An Analytic and Probabilistic Approach to Balayage, Springer-Verlag, Berlin, 1986. (1986) MR0850715
  4. M. Brelot, Elémentes de la théorie classique du potentiel, 2 e ed., Centre de Documentation Universitaire, Paris, 1961. (1961) MR0106366
  5. M. Brelot, Sur les ensembles effilés, Bull. Sci. Math. 68 (1944), 12-36. (1944) Zbl0028.36201MR0012364
  6. M. Brzezina, On the base and the essential base in parabolic potential theory, Czechoslovak Math. J. (to appear). Zbl0712.31001MR1032362
  7. C. Constantinescu A. Cornea, Potential theory on harmonic spaces, Springer-Verlag, Berlin, 1972. (1972) MR0419799
  8. C. L. Evans F. R. Gariepy, Wiener's criterion for the heat equation, Arch. Rational Mech. Anal. 78 (1982), 293-314. (1982) MR0653544
  9. N. Garofalo E. Lanconelli, Wiener's criterion for parabolic equations with variable coefficients and its consequences, Trans. Amer. Math. Soc. 308 (1988), 811-836. (1988) MR0951629
  10. W. Hansen, [unknown], Private communication. Zbl1167.26307
  11. L. L. Helms, Introduction to potential theory, Wiley Interscience, New York, 1969. (1969) Zbl0188.17203MR0261018
  12. P. Negrini V. Scornazzani, Wiener criterion for a class of degenerate elliptic operators, J. Differential Equations 66 (1987), 151-164. (1987) MR0871992
  13. N. Wiener, The Dirichlet problem, J. Math. Phys. 3 (1924), 127-146. (1924) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.