Property and of Orlicz spaces
Commentationes Mathematicae Universitatis Carolinae (1990)
- Volume: 031, Issue: 2, page 307-313
- ISSN: 0010-2628
Access Full Article
topHow to cite
topWang, Ting Fu. "Property $({\rm G})$ and $({\rm K})$ of Orlicz spaces." Commentationes Mathematicae Universitatis Carolinae 031.2 (1990): 307-313. <http://eudml.org/doc/17848>.
@article{Wang1990,
author = {Wang, Ting Fu},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {property (K); Orlicz sequence space; Orlicz or Luxemburg norm; condition; strictly convex},
language = {eng},
number = {2},
pages = {307-313},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Property $(\{\rm G\})$ and $(\{\rm K\})$ of Orlicz spaces},
url = {http://eudml.org/doc/17848},
volume = {031},
year = {1990},
}
TY - JOUR
AU - Wang, Ting Fu
TI - Property $({\rm G})$ and $({\rm K})$ of Orlicz spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1990
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 031
IS - 2
SP - 307
EP - 313
LA - eng
KW - property (K); Orlicz sequence space; Orlicz or Luxemburg norm; condition; strictly convex
UR - http://eudml.org/doc/17848
ER -
References
top- Ky Fan, Glicksberg I., Some geometric properties of the spheres in a normed linear space, Duke Math. J. 25 (1958), 553-568. (1958) Zbl0084.33101MR0098976
- Bor-Luh Lin, Pei-Kee Lin S. L. Troyanski, Some geometric and topological properties of the unit spheres in a Banach space, Math. Ann. 274 (1986), 613-616. (1986) MR0848506
- Wu Congxin, Chen Shutao, Wang Yuwen, Property of Orlicz Sequence spaces, J. Harbin Tech. Univ., supplementary issue (1985), 6-10. (1985)
- Chen Shutao, Wang Yuwen, Property of Orlicz spaces, Chinese Math. Ann., 8A 1 (1987), 61-67. (1987) MR0901639
- Kamińska A., The criteria for LUR of Orlicz spaces, Studia Math. 79 (1984), 201-215. (1984) MR0781718
- Kamińska A., On UR of Orlicz spaces, Indag. Math. 85 (1982), 27-36. (1982) MR0653453
- Troyanski S., On a property of the norm which is close to LUR, Math. Ann. 271 (1985), 305-314. (1985) MR0783556
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.