# On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.

R. Balasubramanian; T.N. Shorey; M. Langevin; M. Waldschmidt

Monatshefte für Mathematik (1996)

- Volume: 121, Issue: 4, page 295-308
- ISSN: 0026-9255; 1436-5081/e

## Access Full Article

top## How to cite

topBalasubramanian, R., et al. "On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.." Monatshefte für Mathematik 121.4 (1996): 295-308. <http://eudml.org/doc/178727>.

@article{Balasubramanian1996,

author = {Balasubramanian, R., Shorey, T.N., Langevin, M., Waldschmidt, M.},

journal = {Monatshefte für Mathematik},

keywords = {maximal length of sequences; linear forms in logarithms; -conjecture; prime divisors; arithmetic progressions; greatest squarefree divisor},

number = {4},

pages = {295-308},

title = {On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.},

url = {http://eudml.org/doc/178727},

volume = {121},

year = {1996},

}

TY - JOUR

AU - Balasubramanian, R.

AU - Shorey, T.N.

AU - Langevin, M.

AU - Waldschmidt, M.

TI - On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.

JO - Monatshefte für Mathematik

PY - 1996

VL - 121

IS - 4

SP - 295

EP - 308

KW - maximal length of sequences; linear forms in logarithms; -conjecture; prime divisors; arithmetic progressions; greatest squarefree divisor

UR - http://eudml.org/doc/178727

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.