On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.
R. Balasubramanian; T.N. Shorey; M. Langevin; M. Waldschmidt
Monatshefte für Mathematik (1996)
- Volume: 121, Issue: 4, page 295-308
- ISSN: 0026-9255; 1436-5081/e
Access Full Article
topHow to cite
topBalasubramanian, R., et al. "On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.." Monatshefte für Mathematik 121.4 (1996): 295-308. <http://eudml.org/doc/178727>.
@article{Balasubramanian1996,
author = {Balasubramanian, R., Shorey, T.N., Langevin, M., Waldschmidt, M.},
journal = {Monatshefte für Mathematik},
keywords = {maximal length of sequences; linear forms in logarithms; -conjecture; prime divisors; arithmetic progressions; greatest squarefree divisor},
number = {4},
pages = {295-308},
title = {On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.},
url = {http://eudml.org/doc/178727},
volume = {121},
year = {1996},
}
TY - JOUR
AU - Balasubramanian, R.
AU - Shorey, T.N.
AU - Langevin, M.
AU - Waldschmidt, M.
TI - On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.
JO - Monatshefte für Mathematik
PY - 1996
VL - 121
IS - 4
SP - 295
EP - 308
KW - maximal length of sequences; linear forms in logarithms; -conjecture; prime divisors; arithmetic progressions; greatest squarefree divisor
UR - http://eudml.org/doc/178727
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.