Remarks on some nonlinear Dirichlet problems with unbounded nonlinearities

Juan J. Nieto

Commentationes Mathematicae Universitatis Carolinae (1990)

  • Volume: 031, Issue: 3, page 511-515
  • ISSN: 0010-2628

How to cite

top

Nieto, Juan J.. "Remarks on some nonlinear Dirichlet problems with unbounded nonlinearities." Commentationes Mathematicae Universitatis Carolinae 031.3 (1990): 511-515. <http://eudml.org/doc/17873>.

@article{Nieto1990,
author = {Nieto, Juan J.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {duality principle; alternative method; Dirichlet problem},
language = {eng},
number = {3},
pages = {511-515},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on some nonlinear Dirichlet problems with unbounded nonlinearities},
url = {http://eudml.org/doc/17873},
volume = {031},
year = {1990},
}

TY - JOUR
AU - Nieto, Juan J.
TI - Remarks on some nonlinear Dirichlet problems with unbounded nonlinearities
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1990
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 031
IS - 3
SP - 511
EP - 515
LA - eng
KW - duality principle; alternative method; Dirichlet problem
UR - http://eudml.org/doc/17873
ER -

References

top
  1. Aguinaldo L., Schmitt K., On the boundary value problem u " + u = a u - + p ( t ) , u ( 0 ) = 0 = u ( π ) , Proc. Amer. Math. Soc. 68 (1978), 64-68. (1978) MR0466707
  2. Ahmad S., A resonance problem in which the nonlineariiy may grow linearly, Proc. Amer. Mat. Soc. 82 (1984), 381-384. (1984) MR0759657
  3. Brezis H., Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc. 8 (1983), 409-426. (1983) Zbl0537.35055MR0693957
  4. Cesari L., Kannan R., An abstract theorem at resonance, Proc. Amer. Math. Soc. 63 (1977), 221-225. (1977) MR0448180
  5. Cesari L., Kannan R., Existence of solutions of a nonlinear differential equation, Proc. Amer. Math. Soc. 88 (1983), 605-613. (1983) Zbl0529.34005MR0702284
  6. Drábek P., On the resonance problem with nonlinearity which has arbitrary linear growth, J. Math. Anal. Appl. 127 (1987), 435-442. (1987) MR0915069
  7. Fučík S., Boundary value problems with jumping nonlinearities, Časopis Pěst. Mat. 101 (1976), 69-87. (1976) MR0447688
  8. Iaanaci R., Nkashama M.N., Ward J.R., Nonlinear second order elliptic partial differential equations at resonance, Trans. Amer. Math. Soc. 311 (1989), 711-726. (1989) MR0951886
  9. Kannan R., Ortega R., Existence of solutions of x ' ' + x + g ( x ) = p ( t ) , x ( 0 ) = 0 = x ( π ) , Proc. Amer. Math. Soc. 96 (1986), 67-70. (1986) Zbl0585.34001MR0813812
  10. Kannan R., Lakshmikantham V., Nieto J. J., Sufficient conditions for existence of solutions of nonlinear boundary value problems at resonance, Nonlinear Anal. 7 (1983), 1013-1020. (1983) Zbl0542.47053MR0713210
  11. Kannan R., Nieto J. J., Ray M. B., A class of nonlinear boundary value problems without Landesman-Lazer condition, J. Math. Anal. Appl. 105 (1985), 1-11. (1985) Zbl0589.34013MR0773569
  12. Nieto J. J., Hukuhara-Kneser property for a nonlinear Dirichlet problem, J. Math. Anal. Appl. 128 (1987), 57-63. (1987) Zbl0648.34019MR0915966
  13. Nieto J. J., Aronszajn's theorem for some nonlinear Dirichlet problems with unbounded nonlinearities, Proc. Edinburgh Math. Soc. 31 (1988), 345-351. (1988) Zbl0631.34027MR0969064
  14. Schechter M., Shapiro J., Snow M., Solutions of the nonlinear problem A u = N u in a Banach space, Trans. Amer. Math. Soc. 241 (1978), 69-78. (1978) MR0492290

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.