Boundary value problems with nonlinear boundary conditions in Banach spaces

Giuseppe Marino; Paolamaria Pietramala

Commentationes Mathematicae Universitatis Carolinae (1990)

  • Volume: 031, Issue: 4, page 711-721
  • ISSN: 0010-2628

How to cite

top

Marino, Giuseppe, and Pietramala, Paolamaria. "Boundary value problems with nonlinear boundary conditions in Banach spaces." Commentationes Mathematicae Universitatis Carolinae 031.4 (1990): 711-721. <http://eudml.org/doc/17892>.

@article{Marino1990,
author = {Marino, Giuseppe, Pietramala, Paolamaria},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {evolution operator; boundary value problem; nonlinear operator; existence of a solution; Banach space; Schaefer's fixed point theorem},
language = {eng},
number = {4},
pages = {711-721},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Boundary value problems with nonlinear boundary conditions in Banach spaces},
url = {http://eudml.org/doc/17892},
volume = {031},
year = {1990},
}

TY - JOUR
AU - Marino, Giuseppe
AU - Pietramala, Paolamaria
TI - Boundary value problems with nonlinear boundary conditions in Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1990
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 031
IS - 4
SP - 711
EP - 721
LA - eng
KW - evolution operator; boundary value problem; nonlinear operator; existence of a solution; Banach space; Schaefer's fixed point theorem
UR - http://eudml.org/doc/17892
ER -

References

top
  1. Scrucca E., Un problema ai limiti quasi lineare in spazi di Banach, Atti Accad. Naz. Lincei Rend. Cl. Sc. Fis. Mat. Nat. XLII (1967), 361-364. (1967) Zbl0166.12801MR0222431
  2. Conti R., Recent trends in the theory of boundary value problems for ordinary differential equations, Boll. U.M.I. XXII (1967), 135-178. (1967) Zbl0154.09101MR0218650
  3. Opial Z., Linear problems for systems of nonlinear differential equations, J. Diff. Eqns. 3 (1967), 580-594. (1967) Zbl0161.06102MR0216068
  4. Bernfeld S. R., Lakshmikantham V., An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974. (1974) Zbl0286.34018MR0445048
  5. Kartsatos A. G., Non zero solutions to boundary value problems for nonlinear systems, Pacific J. Math. 53 (1974), 425-433. (1974) MR0377164
  6. Furi M., Martelli M., Vignoli A., Stably-solvable operators in Banach spaces, Atti Accad. Naz. Lincei Rend. Cl. Sc. Mat. Fis. Nat. VIII, LX (1976), 21-26. (1976) Zbl0361.47024MR0487632
  7. Anichini G., Nonlinear problems for systems of differential equations, Nonlin. Anal. TMA 1 (1977), 691-699. (1977) Zbl0388.34011MR0592963
  8. Anichini G., Conti G., Boundary-value problems with nonlinear boundary conditions, Nonlinearity 1 (1988), 1-10. (1988) Zbl0672.34022MR0967470
  9. MartelH M., A Rothe's type theorem for non compact acyclic-valued maps, Boll. U.M.I. 4, 11 Suppl. fasc. 3 (1975), 70-76. (1975) MR0394752
  10. Schaefer H., Über die Methode der a priori Schranken, Math. Ann. 129 (1955), 415-416. (1955) Zbl0064.35703MR0071723
  11. Hale J. K., Ordinary Differential Equations, Interscience, New York, 1969. (1969) Zbl0186.40901MR0419901
  12. Krein S. G., Linear differential equations in Banach spaces, Trans. Math. Mon. 29, AMS Providence, 1971. (1971) MR0342804
  13. Zecca P., Zezza P., Nonlinear boundary value problems in Banach spaces for multivalued differential equations on a noncompact interval, Nonlin. Anal. TMA 3 (1979), 347-352. (1979) Zbl0443.34060MR0532895
  14. Papageorgiou N. S., Boundary value problems for evolution inclusions, Comm. Math. Univ. Carolinae 29 (1988), 355-363. (1988) Zbl0696.35074MR0957404

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.