Phase and dispersion theory of the differential equation y ' ' = q ( t ) y in connection with the generalized Floquet theory

Staněk, Svatoslav

Archivum Mathematicum (1978)

  • Volume: 014, Issue: 2, page 109-122
  • ISSN: 0044-8753

How to cite

top

Staněk, Svatoslav. "Phase and dispersion theory of the differential equation $y^{\prime \prime }=q(t)y$ in connection with the generalized Floquet theory." Archivum Mathematicum 014.2 (1978): 109-122. <http://eudml.org/doc/17970>.

@article{Staněk1978,
author = {Staněk, Svatoslav},
journal = {Archivum Mathematicum},
keywords = {Floquet theory; periodic solutions; dispersion; characteristic multiplier; linear differential equations; transformation of equations},
language = {eng},
number = {2},
pages = {109-122},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Phase and dispersion theory of the differential equation $y^\{\prime \prime \}=q(t)y$ in connection with the generalized Floquet theory},
url = {http://eudml.org/doc/17970},
volume = {014},
year = {1978},
}

TY - JOUR
AU - Staněk, Svatoslav
TI - Phase and dispersion theory of the differential equation $y^{\prime \prime }=q(t)y$ in connection with the generalized Floquet theory
JO - Archivum Mathematicum
PY - 1978
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 014
IS - 2
SP - 109
EP - 122
LA - eng
KW - Floquet theory; periodic solutions; dispersion; characteristic multiplier; linear differential equations; transformation of equations
UR - http://eudml.org/doc/17970
ER -

References

top
  1. Borůvka O., Linear Differential Transformations of the Second Order, The English Universities Press, London 1971. (1971) MR0463539
  2. Borůvka O., On central dispersions of the differential equation y" = q(t)y with periodic coefficients, Lecture Notes in Mаthemаtics, 415, Proceedings of the Conference held аt Dundee, Scotlаnd, 26-29, Mаrch, 1974, 47-60. (1974) MR0450691
  3. Borůvkа O., Sur les blocs des équations différentielles y" = q(t)y aux coefficients périodiques, Rend. Mаt. (2), 8, Ѕ. VI, 1975, 519-532. (1975) MR0379945
  4. Bоrůvkа O., Sur quelques compléments á la théorie de Ғloquet pour les équations différentielles du deuxième ordre, Ann. mаt. p. ed аppl. Ѕ. IV, CII, 1975, 71-77. (1975) 
  5. Боpувка O., Teopuя глoбaльныx cвoйcmв oбыкнoвeнныx лuнeйныx дuффepeнцuaльныx ypaвнeнuй вmopoгo нopядкa, Диффepeнциальныe уpавнeния, Hо 8, т. ХII, 1976, 1347-1383. (1976) 
  6. Лайтоx M., Pacшupeнue мemoдa Флoкe для onpeдeлeнuя вuдa фyндaмeнmaльнoй cucmeмы peшeнuй дuффepeнцuaлънoгo ypaвнeнuя вmopoгo nopядкa y" = q(t)y, Чex. мат. жуpнал, T. 5 (80), 1955, 164-173. (1955) 
  7. Mаgnuѕ W. аnd Winkler Ѕ., Hill's Equation, Interѕсienсe Publiѕherѕ New Yоrk, 1966. (1966) 
  8. Neumаn F., Note on bounded non-periodic solutions of second-order linear differential equations with periodic coefficients, Mаth. Nасhr. 39, 1969, 217-222. (1969) MR0247193

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.