Arbitrarily traceable Eulerian graph has the Hamiltonian square

Milan Sekanina; Anna Sekaninová

Archivum Mathematicum (1982)

  • Volume: 018, Issue: 2, page 91-93
  • ISSN: 0044-8753

How to cite

top

Sekanina, Milan, and Sekaninová, Anna. "Arbitrarily traceable Eulerian graph has the Hamiltonian square." Archivum Mathematicum 018.2 (1982): 91-93. <http://eudml.org/doc/18081>.

@article{Sekanina1982,
author = {Sekanina, Milan, Sekaninová, Anna},
journal = {Archivum Mathematicum},
keywords = {Eulerian graph; forest; square of a graph},
language = {eng},
number = {2},
pages = {91-93},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Arbitrarily traceable Eulerian graph has the Hamiltonian square},
url = {http://eudml.org/doc/18081},
volume = {018},
year = {1982},
}

TY - JOUR
AU - Sekanina, Milan
AU - Sekaninová, Anna
TI - Arbitrarily traceable Eulerian graph has the Hamiltonian square
JO - Archivum Mathematicum
PY - 1982
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 018
IS - 2
SP - 91
EP - 93
LA - eng
KW - Eulerian graph; forest; square of a graph
UR - http://eudml.org/doc/18081
ER -

References

top
  1. Fleischner H., The square of every nonseparable graph is Hamiltonian, Bull. Am. Math. Soc., 77 (1971), 1052-1054. (1971) Zbl0223.05124MR0284364
  2. Fleischner H., Hobbs A. M., A necessary condition, for the square of a graph to be Hamiltonian, J. of Comb. Theory, 19, 1975, 97-118. (1975) Zbl0315.05120MR0414433
  3. Hobbs A. M., Hamiltonian square of cacti, J. of Comb. Theory, Series B, 26 (1979), 50-65. (1979) MR0525816
  4. Karaganis J. J., On the cube a graph, Can. Math. Bull., 11 (1968), 295-296. (1968) MR0230645
  5. Neuman F., On a certain ordering of the vertices of a tree, Časopis pěst. mat., 89 (1964) 323-339. (1964) Zbl0131.20901MR0181587
  6. Ore O., A problem regarding the tracing of graphs, Elem. Math., 6 (1951), 49-53. (1951) Zbl0043.38503MR0041418
  7. Ore O., Theory of graphs, A. M. S., Providence, 1962. (1962) Zbl0105.35401MR0150753
  8. Sekanina M., On an ordering of the set of vertices of a connected graph, Publ. Fac. Sc. Univ. Brno, No 412, 1960, 137-142. (1960) Zbl0118.18903MR0140095

NotesEmbed ?

top

You must be logged in to post comments.