On Urabe's application of Newton's method to nonlinear boundary value problems

Ravi P. Agarwal

Archivum Mathematicum (1984)

  • Volume: 020, Issue: 3, page 113-123
  • ISSN: 0044-8753

How to cite

top

Agarwal, Ravi P.. "On Urabe's application of Newton's method to nonlinear boundary value problems." Archivum Mathematicum 020.3 (1984): 113-123. <http://eudml.org/doc/18136>.

@article{Agarwal1984,
author = {Agarwal, Ravi P.},
journal = {Archivum Mathematicum},
keywords = {contraction mapping principle; approximate solution},
language = {eng},
number = {3},
pages = {113-123},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On Urabe's application of Newton's method to nonlinear boundary value problems},
url = {http://eudml.org/doc/18136},
volume = {020},
year = {1984},
}

TY - JOUR
AU - Agarwal, Ravi P.
TI - On Urabe's application of Newton's method to nonlinear boundary value problems
JO - Archivum Mathematicum
PY - 1984
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 020
IS - 3
SP - 113
EP - 123
LA - eng
KW - contraction mapping principle; approximate solution
UR - http://eudml.org/doc/18136
ER -

References

top
  1. R. P. Agarwal, Iterative methods for the system of second order boundary value problems, J. Math. Phys. Sci. 11 (1977), 209-218. (1977) MR0461924
  2. R. P. Agarwal, Component-wise convergence in quasilinearization, Proc. Indian Acad. Sci. Sec. A. 86 (1977), 519-529. (1977) Zbl0391.34003MR0492473
  3. R. P. Agarwal, On periodic solutions of nonlinear second order differential systems, J. Comp. Appl. Math. 5 (1979), 117-123. (1979) Zbl0407.34021MR0536248
  4. R. P. Agarwal, Jaromír Vosmanský, Two-point boundary value problems for second order systems, Arch. Math. (Brno), 19 (1983), 1-8. (1983) Zbl0536.34010MR0724304
  5. R. P. Agarwal, Contraction and approximate contraction with an application to multi-point boundary value problems, J. Comp. Appl. Math. 9 (1983), 315-325. (1983) Zbl0546.65060MR0729235
  6. G. Anichini, Nonlinear problems for systems of differential equations, Nonlinear Analysis. Theory, Methods and Applications, 1 (1977), 691-699. (1977) Zbl0388.34011MR0592963
  7. S. R. Bernfeld, V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974. (1974) Zbl0286.34018MR0445048
  8. L. Collatz, Functional Analysis and Numerical Mathematics, Academic Press, New York, 1974. (1974) MR0205126
  9. R. Conti, Recent trends in the theory of boundary value problems for ordinary differential equations, Boll. UMI, 22 (1967), 135-178. (1967) Zbl0154.09101MR0218650
  10. P. L. Falb, J. L. de Jong, Some Successive Approximation Methods in Control and Oscillation Theory, Academic Press, New York, 1969. (1969) Zbl0202.09603MR0264855
  11. A. Perov, A. Kibenko, On a certain general method for investigation of boundary value problems, Izv. Akad. Nauk SSSR 30 (1966), 249-264. (1966) MR0196534
  12. J. Schröder, Das Iterationsverfahren bei verallgemeinertem Abstandsbegriff, Math. Z. 60 (1956), 111-116. (1956) Zbl0073.33503MR0083816
  13. M. Urabe, An existence theorem for multi-point boundary value problems, Funkcialaj Ekvacioj, 9 (1966), 43-60. (1966) Zbl0168.06502MR0209558
  14. M. Urabe, The Newton method and its applications, Proc. US-Japan seminar on differential and functional equations, (1967), 383-410. (1967) Zbl0244.65054MR0223628
  15. M. Urabe, Component-wise error analysis of iterative methods practiced on a floating-point system, Mem. Fac. Sci. Kyushu Univ. Ser. A. 27 (1973), 23-64. (1973) Zbl0277.65034MR0323099
  16. M. Urabe, A posteriori component-wise error estimation of approximate solutions to nonlinear equations, Lecture notes in Computer science 29, Interval Mathematics, Springer-Verlag (1975), 99-117. (1975) Zbl0306.65031
  17. M. Urabe, On the Newton method to solve problems of the least squares type for ordinary differential equations, Proc. Int. Symp. Dynamical Systems, Providence, (1974), 1-7. (1974) Zbl0357.65055MR0375791
  18. M. Urabe, On the Newton method to solve problems of the least squares type for ordinary differential equations, Mem. Fac. Sci. Kyushu Univ., Ser. A, 29 (1975), 173-183. (1975) Zbl0357.65055MR0375791

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.