On the terminal value problem for differential equations with deviating arguments

Vasilios Anast. Staïkos; Panagiotis Ch. Tsamatos

Archivum Mathematicum (1985)

  • Volume: 021, Issue: 1, page 43-49
  • ISSN: 0044-8753

How to cite

top

Staïkos, Vasilios Anast., and Tsamatos, Panagiotis Ch.. "On the terminal value problem for differential equations with deviating arguments." Archivum Mathematicum 021.1 (1985): 43-49. <http://eudml.org/doc/18153>.

@article{Staïkos1985,
author = {Staïkos, Vasilios Anast., Tsamatos, Panagiotis Ch.},
journal = {Archivum Mathematicum},
keywords = {differential equations with deviating arguments; terminal value problem; existence and uniqueness of solutions; asymptotic behavior of solutions; terminal value problems; first order differential equation},
language = {eng},
number = {1},
pages = {43-49},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the terminal value problem for differential equations with deviating arguments},
url = {http://eudml.org/doc/18153},
volume = {021},
year = {1985},
}

TY - JOUR
AU - Staïkos, Vasilios Anast.
AU - Tsamatos, Panagiotis Ch.
TI - On the terminal value problem for differential equations with deviating arguments
JO - Archivum Mathematicum
PY - 1985
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 021
IS - 1
SP - 43
EP - 49
LA - eng
KW - differential equations with deviating arguments; terminal value problem; existence and uniqueness of solutions; asymptotic behavior of solutions; terminal value problems; first order differential equation
UR - http://eudml.org/doc/18153
ER -

References

top
  1. C Avramescu, Sur l'existence des solutions convergentes des systèmes d'équations différentielles non linéaires, Ann. Mat. Pura Appl., 81 (1969), 147-167. (1969) Zbl0196.10701MR0249738
  2. T. G. Hallam, A comparison principle for terminal value problems in ordinary differential equations, Trans. Amer. Math. Soc., 169 (1972), 49-57. (1972) Zbl0257.34012MR0306611
  3. T. G. Hallam G. Ladas, V. Lakshmikantham, On the asymptotic behavior of functional differential equations, SIAM J. Math. Anal., 3 (1972), 58-64. (1972) Zbl0241.34078MR0315247
  4. J. Kurzweil, On solutions of nonautonomous linear delayed differential equations, which are defined and exponentially bounded for t - , Časopis Pěst. Mat., 96 (1971), 229-238. (1971) Zbl0218.34065MR0298164
  5. G. Ladas, V. Lakshmikantham, Global existence and asymptotic equilibrium in Banach spaces, J. Indian Math. Soc., 36 (1972), 33-40. (1972) Zbl0273.34040MR0318622
  6. G. Ladas, V. Lakshmikantham, Asymptotic equilibrium of ordinary differential systems, Applicable Anal., 5 (1975), 33-39. (1975) Zbl0344.34036MR0508580
  7. E.-B. Lim, Asymptotic behavior of solutions of the functional differential equation x ' = A x ( λ t ) + B x ( t ) , λ > 0 , J. Math. Anal. Appl., 55 (1978), 794-806. (1978) MR0447749
  8. A. R. Mitchell, R. W. Mitchell, Asymptotic equilibrium of ordinary differential systems in a Banach space, Math. Systems Theory, 9 (1976), 308-314. (1976) Zbl0334.34052MR0463603
  9. L. Pandolfi, Some Observations on the Asymptotic Behavior of the Solutions of the Equation x ˙ = A ( t ) x ( λ t ) + B ( t ) x ( t ) , λ > 0 , J. Math. Anal. Appl., 67 (1979), 483-489. (1979) Zbl0413.34079MR0528702
  10. V. A. Staikos, Differential Equations with Deviating Arguments-Oscillation Theory, (unpublished manuscripts). Zbl0453.34055
  11. V. A. Staikos, Asymptotic behavior and oscillation of the bounded solutions of differential equations with deviating arguments, (in Russian), Ukrain. Mat. Ž., 31 (1979), 705 - 716. (1979) MR0567287

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.