On the terminal value problem for differential equations with deviating arguments

Vasilios Anast. Staïkos; Panagiotis Ch. Tsamatos

Archivum Mathematicum (1985)

  • Volume: 021, Issue: 1, page 43-49
  • ISSN: 0044-8753

How to cite

top

Staïkos, Vasilios Anast., and Tsamatos, Panagiotis Ch.. "On the terminal value problem for differential equations with deviating arguments." Archivum Mathematicum 021.1 (1985): 43-49. <http://eudml.org/doc/18153>.

@article{Staïkos1985,
author = {Staïkos, Vasilios Anast., Tsamatos, Panagiotis Ch.},
journal = {Archivum Mathematicum},
keywords = {differential equations with deviating arguments; terminal value problem; existence and uniqueness of solutions; asymptotic behavior of solutions; terminal value problems; first order differential equation},
language = {eng},
number = {1},
pages = {43-49},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the terminal value problem for differential equations with deviating arguments},
url = {http://eudml.org/doc/18153},
volume = {021},
year = {1985},
}

TY - JOUR
AU - Staïkos, Vasilios Anast.
AU - Tsamatos, Panagiotis Ch.
TI - On the terminal value problem for differential equations with deviating arguments
JO - Archivum Mathematicum
PY - 1985
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 021
IS - 1
SP - 43
EP - 49
LA - eng
KW - differential equations with deviating arguments; terminal value problem; existence and uniqueness of solutions; asymptotic behavior of solutions; terminal value problems; first order differential equation
UR - http://eudml.org/doc/18153
ER -

References

top
  1. C Avramescu, Sur l'existence des solutions convergentes des systèmes d'équations différentielles non linéaires, Ann. Mat. Pura Appl., 81 (1969), 147-167. (1969) Zbl0196.10701MR0249738
  2. T. G. Hallam, A comparison principle for terminal value problems in ordinary differential equations, Trans. Amer. Math. Soc., 169 (1972), 49-57. (1972) Zbl0257.34012MR0306611
  3. T. G. Hallam G. Ladas, V. Lakshmikantham, On the asymptotic behavior of functional differential equations, SIAM J. Math. Anal., 3 (1972), 58-64. (1972) MR0315247
  4. J. Kurzweil, On solutions of nonautonomous linear delayed differential equations, which are defined and exponentially bounded for t - , Časopis Pěst. Mat., 96 (1971), 229-238. (1971) Zbl0218.34065MR0298164
  5. G. Ladas, V. Lakshmikantham, Global existence and asymptotic equilibrium in Banach spaces, J. Indian Math. Soc., 36 (1972), 33-40. (1972) Zbl0273.34040MR0318622
  6. G. Ladas, V. Lakshmikantham, Asymptotic equilibrium of ordinary differential systems, Applicable Anal., 5 (1975), 33-39. (1975) Zbl0344.34036MR0508580
  7. E.-B. Lim, Asymptotic behavior of solutions of the functional differential equation x ' = A x ( λ t ) + B x ( t ) , λ > 0 , J. Math. Anal. Appl., 55 (1978), 794-806. (1978) MR0447749
  8. A. R. Mitchell, R. W. Mitchell, Asymptotic equilibrium of ordinary differential systems in a Banach space, Math. Systems Theory, 9 (1976), 308-314. (1976) Zbl0334.34052MR0463603
  9. L. Pandolfi, Some Observations on the Asymptotic Behavior of the Solutions of the Equation x ˙ = A ( t ) x ( λ t ) + B ( t ) x ( t ) , λ > 0 , J. Math. Anal. Appl., 67 (1979), 483-489. (1979) MR0528702
  10. V. A. Staikos, Differential Equations with Deviating Arguments-Oscillation Theory, (unpublished manuscripts). 
  11. V. A. Staikos, Asymptotic behavior and oscillation of the bounded solutions of differential equations with deviating arguments, (in Russian), Ukrain. Mat. Ž., 31 (1979), 705 - 716. (1979) MR0567287

NotesEmbed ?

top

You must be logged in to post comments.