The basic properties of phase matrices of linear differential systems

Ondřej Došlý

Archivum Mathematicum (1985)

  • Volume: 021, Issue: 2, page 113-121
  • ISSN: 0044-8753

How to cite

top

Došlý, Ondřej. "The basic properties of phase matrices of linear differential systems." Archivum Mathematicum 021.2 (1985): 113-121. <http://eudml.org/doc/18160>.

@article{Došlý1985,
author = {Došlý, Ondřej},
journal = {Archivum Mathematicum},
keywords = {selfadjoint differential systems; isotropic solution; phase matrices of selfadjoint linear differential systems of; second order; phase functions of scalar differential equations; phase matrices of selfadjoint linear differential systems of second order},
language = {eng},
number = {2},
pages = {113-121},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The basic properties of phase matrices of linear differential systems},
url = {http://eudml.org/doc/18160},
volume = {021},
year = {1985},
}

TY - JOUR
AU - Došlý, Ondřej
TI - The basic properties of phase matrices of linear differential systems
JO - Archivum Mathematicum
PY - 1985
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 021
IS - 2
SP - 113
EP - 121
LA - eng
KW - selfadjoint differential systems; isotropic solution; phase matrices of selfadjoint linear differential systems of; second order; phase functions of scalar differential equations; phase matrices of selfadjoint linear differential systems of second order
UR - http://eudml.org/doc/18160
ER -

References

top
  1. J. H. Barrett, A Prüfer transformation for matrix differential equations, Proc. Amer. Math. Soc. 8 (1957) 510-518. (1957) Zbl0079.10603MR0087821
  2. O. Borůvka, Lineare Differentialtransformationen 2. Ordnung, VEB Deutscher Verlag der Wissenschaften, Berlin 1967. (1967) MR0236448
  3. W. A. Coppel, Disconjugacy, Lectures Notes in Mathematics 220, Springer Verlag, Berlin-New York-Heidelberg 1971. (1971) Zbl0224.34003MR0460785
  4. O. Došlý, A phase matrix of linear differential systems, (to appear). MR0796568
  5. J. Radon, Zum problem von Lagrange, Abh. Math. Sem. Univ. Hamburg 6 (1928) 237-299. (1928) 
  6. W. T. Reid, Ordinary Differential Equations, John Willey, New York 1971. (1971) Zbl0212.10901MR0273082

NotesEmbed ?

top

You must be logged in to post comments.