The basic properties of phase matrices of linear differential systems

Ondřej Došlý

Archivum Mathematicum (1985)

  • Volume: 021, Issue: 2, page 113-121
  • ISSN: 0044-8753

How to cite

top

Došlý, Ondřej. "The basic properties of phase matrices of linear differential systems." Archivum Mathematicum 021.2 (1985): 113-121. <http://eudml.org/doc/18160>.

@article{Došlý1985,
author = {Došlý, Ondřej},
journal = {Archivum Mathematicum},
keywords = {selfadjoint differential systems; isotropic solution; phase matrices of selfadjoint linear differential systems of; second order; phase functions of scalar differential equations; phase matrices of selfadjoint linear differential systems of second order},
language = {eng},
number = {2},
pages = {113-121},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The basic properties of phase matrices of linear differential systems},
url = {http://eudml.org/doc/18160},
volume = {021},
year = {1985},
}

TY - JOUR
AU - Došlý, Ondřej
TI - The basic properties of phase matrices of linear differential systems
JO - Archivum Mathematicum
PY - 1985
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 021
IS - 2
SP - 113
EP - 121
LA - eng
KW - selfadjoint differential systems; isotropic solution; phase matrices of selfadjoint linear differential systems of; second order; phase functions of scalar differential equations; phase matrices of selfadjoint linear differential systems of second order
UR - http://eudml.org/doc/18160
ER -

References

top
  1. J. H. Barrett, A Prüfer transformation for matrix differential equations, Proc. Amer. Math. Soc. 8 (1957) 510-518. (1957) Zbl0079.10603MR0087821
  2. O. Borůvka, Lineare Differentialtransformationen 2. Ordnung, VEB Deutscher Verlag der Wissenschaften, Berlin 1967. (1967) MR0236448
  3. W. A. Coppel, Disconjugacy, Lectures Notes in Mathematics 220, Springer Verlag, Berlin-New York-Heidelberg 1971. (1971) Zbl0224.34003MR0460785
  4. O. Došlý, A phase matrix of linear differential systems, (to appear). MR0796568
  5. J. Radon, Zum problem von Lagrange, Abh. Math. Sem. Univ. Hamburg 6 (1928) 237-299. (1928) 
  6. W. T. Reid, Ordinary Differential Equations, John Willey, New York 1971. (1971) Zbl0212.10901MR0273082

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.