Hopf bifurcation in symmetric systems

André L. Vanderbauwhede

Archivum Mathematicum (1986)

  • Volume: 022, Issue: 1, page 29-53
  • ISSN: 0044-8753

How to cite


Vanderbauwhede, André L.. "Hopf bifurcation in symmetric systems." Archivum Mathematicum 022.1 (1986): 29-53. <http://eudml.org/doc/18178>.

author = {Vanderbauwhede, André L.},
journal = {Archivum Mathematicum},
keywords = {symmetric systems; Hopf bifurcation; rotational symmetries in the plane; time-reversibility},
language = {eng},
number = {1},
pages = {29-53},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Hopf bifurcation in symmetric systems},
url = {http://eudml.org/doc/18178},
volume = {022},
year = {1986},

AU - Vanderbauwhede, André L.
TI - Hopf bifurcation in symmetric systems
JO - Archivum Mathematicum
PY - 1986
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 022
IS - 1
SP - 29
EP - 53
LA - eng
KW - symmetric systems; Hopf bifurcation; rotational symmetries in the plane; time-reversibility
UR - http://eudml.org/doc/18178
ER -


  1. Th. Bröckner, L. Lander, Differentiable germs and catastrophes, LMS Lecture Notes Series 17, Cambridge University Pгess, Cambridge, 1975. (1975) 
  2. M. Golubitsky, I. Stewart, Hopf bifurcation in the presence of symmetry, Arch. Rat. Mech. Anal. 87 (1985), 107-165. (1985) Zbl0588.34030MR0765596
  3. G. Iooss, Bifurcation and transition to turbulence in hydrodynamics, Lecture Notes in Math. 1057, Springer-Verlag, 1984, p. 152-201. (1984) Zbl0537.58037
  4. G. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology, 14 (1975), 63-68. (1975) Zbl0297.57015MR0370643
  5. E. Takigawa, Bifurcation of waves of reaction-diffusion equations on axisymmetric domains, PhD Thesis, Brown University, 1981. (1981) 
  6. A. Vanderbauwhede, Local bifurcation and symmetry, Research Notes in Math., vol. 75, Pitman, London, 1982. (1982) Zbl0539.58022
  7. A. Vanderbauwhede, Bifurcation of periodic solutions in a rotationally symmetric oscillation system, J. Reine Augew. Math. 360 (1985), 1-18. (1985) Zbl0555.34036MR0799655
  8. S. A. Van Gils, Some studies in dynamical system theory, PhD Thesis, Delft, 1984. (1984) 
  9. H. Whitney, Differentiable even functions, Duke Math. J. 10 (1943), 159-160. (1943) Zbl0063.08235MR0007783

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.