Hopf bifurcation in symmetric systems
Archivum Mathematicum (1986)
- Volume: 022, Issue: 1, page 29-53
- ISSN: 0044-8753
Access Full Article
topHow to cite
topVanderbauwhede, André L.. "Hopf bifurcation in symmetric systems." Archivum Mathematicum 022.1 (1986): 29-53. <http://eudml.org/doc/18178>.
@article{Vanderbauwhede1986,
author = {Vanderbauwhede, André L.},
journal = {Archivum Mathematicum},
keywords = {symmetric systems; Hopf bifurcation; rotational symmetries in the plane; time-reversibility},
language = {eng},
number = {1},
pages = {29-53},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Hopf bifurcation in symmetric systems},
url = {http://eudml.org/doc/18178},
volume = {022},
year = {1986},
}
TY - JOUR
AU - Vanderbauwhede, André L.
TI - Hopf bifurcation in symmetric systems
JO - Archivum Mathematicum
PY - 1986
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 022
IS - 1
SP - 29
EP - 53
LA - eng
KW - symmetric systems; Hopf bifurcation; rotational symmetries in the plane; time-reversibility
UR - http://eudml.org/doc/18178
ER -
References
top- Th. Bröckner, L. Lander, Differentiable germs and catastrophes, LMS Lecture Notes Series 17, Cambridge University Pгess, Cambridge, 1975. (1975)
- M. Golubitsky, I. Stewart, Hopf bifurcation in the presence of symmetry, Arch. Rat. Mech. Anal. 87 (1985), 107-165. (1985) Zbl0588.34030MR0765596
- G. Iooss, Bifurcation and transition to turbulence in hydrodynamics, Lecture Notes in Math. 1057, Springer-Verlag, 1984, p. 152-201. (1984) Zbl0537.58037
- G. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology, 14 (1975), 63-68. (1975) Zbl0297.57015MR0370643
- E. Takigawa, Bifurcation of waves of reaction-diffusion equations on axisymmetric domains, PhD Thesis, Brown University, 1981. (1981)
- A. Vanderbauwhede, Local bifurcation and symmetry, Research Notes in Math., vol. 75, Pitman, London, 1982. (1982) Zbl0539.58022
- A. Vanderbauwhede, Bifurcation of periodic solutions in a rotationally symmetric oscillation system, J. Reine Augew. Math. 360 (1985), 1-18. (1985) Zbl0555.34036MR0799655
- S. A. Van Gils, Some studies in dynamical system theory, PhD Thesis, Delft, 1984. (1984)
- H. Whitney, Differentiable even functions, Duke Math. J. 10 (1943), 159-160. (1943) Zbl0063.08235MR0007783
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.