Hopf bifurcation in symmetric systems

André L. Vanderbauwhede

Archivum Mathematicum (1986)

  • Volume: 022, Issue: 1, page 29-53
  • ISSN: 0044-8753

How to cite

top

Vanderbauwhede, André L.. "Hopf bifurcation in symmetric systems." Archivum Mathematicum 022.1 (1986): 29-53. <http://eudml.org/doc/18178>.

@article{Vanderbauwhede1986,
author = {Vanderbauwhede, André L.},
journal = {Archivum Mathematicum},
keywords = {symmetric systems; Hopf bifurcation; rotational symmetries in the plane; time-reversibility},
language = {eng},
number = {1},
pages = {29-53},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Hopf bifurcation in symmetric systems},
url = {http://eudml.org/doc/18178},
volume = {022},
year = {1986},
}

TY - JOUR
AU - Vanderbauwhede, André L.
TI - Hopf bifurcation in symmetric systems
JO - Archivum Mathematicum
PY - 1986
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 022
IS - 1
SP - 29
EP - 53
LA - eng
KW - symmetric systems; Hopf bifurcation; rotational symmetries in the plane; time-reversibility
UR - http://eudml.org/doc/18178
ER -

References

top
  1. Th. Bröckner, L. Lander, Differentiable germs and catastrophes, LMS Lecture Notes Series 17, Cambridge University Pгess, Cambridge, 1975. (1975) 
  2. M. Golubitsky, I. Stewart, Hopf bifurcation in the presence of symmetry, Arch. Rat. Mech. Anal. 87 (1985), 107-165. (1985) Zbl0588.34030MR0765596
  3. G. Iooss, Bifurcation and transition to turbulence in hydrodynamics, Lecture Notes in Math. 1057, Springer-Verlag, 1984, p. 152-201. (1984) Zbl0537.58037
  4. G. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology, 14 (1975), 63-68. (1975) Zbl0297.57015MR0370643
  5. E. Takigawa, Bifurcation of waves of reaction-diffusion equations on axisymmetric domains, PhD Thesis, Brown University, 1981. (1981) 
  6. A. Vanderbauwhede, Local bifurcation and symmetry, Research Notes in Math., vol. 75, Pitman, London, 1982. (1982) Zbl0539.58022
  7. A. Vanderbauwhede, Bifurcation of periodic solutions in a rotationally symmetric oscillation system, J. Reine Augew. Math. 360 (1985), 1-18. (1985) Zbl0555.34036MR0799655
  8. S. A. Van Gils, Some studies in dynamical system theory, PhD Thesis, Delft, 1984. (1984) 
  9. H. Whitney, Differentiable even functions, Duke Math. J. 10 (1943), 159-160. (1943) Zbl0063.08235MR0007783

NotesEmbed ?

top

You must be logged in to post comments.