# Hopf bifurcation in symmetric systems

Archivum Mathematicum (1986)

- Volume: 022, Issue: 1, page 29-53
- ISSN: 0044-8753

## Access Full Article

top## How to cite

topVanderbauwhede, André L.. "Hopf bifurcation in symmetric systems." Archivum Mathematicum 022.1 (1986): 29-53. <http://eudml.org/doc/18178>.

@article{Vanderbauwhede1986,

author = {Vanderbauwhede, André L.},

journal = {Archivum Mathematicum},

keywords = {symmetric systems; Hopf bifurcation; rotational symmetries in the plane; time-reversibility},

language = {eng},

number = {1},

pages = {29-53},

publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},

title = {Hopf bifurcation in symmetric systems},

url = {http://eudml.org/doc/18178},

volume = {022},

year = {1986},

}

TY - JOUR

AU - Vanderbauwhede, André L.

TI - Hopf bifurcation in symmetric systems

JO - Archivum Mathematicum

PY - 1986

PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno

VL - 022

IS - 1

SP - 29

EP - 53

LA - eng

KW - symmetric systems; Hopf bifurcation; rotational symmetries in the plane; time-reversibility

UR - http://eudml.org/doc/18178

ER -

## References

top- Th. Bröckner, L. Lander, Differentiable germs and catastrophes, LMS Lecture Notes Series 17, Cambridge University Pгess, Cambridge, 1975. (1975)
- M. Golubitsky, I. Stewart, Hopf bifurcation in the presence of symmetry, Arch. Rat. Mech. Anal. 87 (1985), 107-165. (1985) Zbl0588.34030MR0765596
- G. Iooss, Bifurcation and transition to turbulence in hydrodynamics, Lecture Notes in Math. 1057, Springer-Verlag, 1984, p. 152-201. (1984) Zbl0537.58037
- G. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology, 14 (1975), 63-68. (1975) Zbl0297.57015MR0370643
- E. Takigawa, Bifurcation of waves of reaction-diffusion equations on axisymmetric domains, PhD Thesis, Brown University, 1981. (1981)
- A. Vanderbauwhede, Local bifurcation and symmetry, Research Notes in Math., vol. 75, Pitman, London, 1982. (1982) Zbl0539.58022
- A. Vanderbauwhede, Bifurcation of periodic solutions in a rotationally symmetric oscillation system, J. Reine Augew. Math. 360 (1985), 1-18. (1985) Zbl0555.34036MR0799655
- S. A. Van Gils, Some studies in dynamical system theory, PhD Thesis, Delft, 1984. (1984)
- H. Whitney, Differentiable even functions, Duke Math. J. 10 (1943), 159-160. (1943) Zbl0063.08235MR0007783

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.