Riccati matrix differential equation and classification of disconjugate differential systems

Ondřej Došlý

Archivum Mathematicum (1987)

  • Volume: 023, Issue: 4, page 231-241
  • ISSN: 0044-8753

How to cite

top

Došlý, Ondřej. "Riccati matrix differential equation and classification of disconjugate differential systems." Archivum Mathematicum 023.4 (1987): 231-241. <http://eudml.org/doc/18226>.

@article{Došlý1987,
author = {Došlý, Ondřej},
journal = {Archivum Mathematicum},
keywords = {principal solutions; hyperbolic phase matrix; Riccati differential equation; disconjugate differential systems},
language = {eng},
number = {4},
pages = {231-241},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Riccati matrix differential equation and classification of disconjugate differential systems},
url = {http://eudml.org/doc/18226},
volume = {023},
year = {1987},
}

TY - JOUR
AU - Došlý, Ondřej
TI - Riccati matrix differential equation and classification of disconjugate differential systems
JO - Archivum Mathematicum
PY - 1987
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 023
IS - 4
SP - 231
EP - 241
LA - eng
KW - principal solutions; hyperbolic phase matrix; Riccati differential equation; disconjugate differential systems
UR - http://eudml.org/doc/18226
ER -

References

top
  1. E. Barvínek, Quadratic phases of differential equations y" + q(x) y = 0, Arch. Math. 8 (1972), 63-78. (1972) MR0326037
  2. J. H. Barrett, A Prüfer transformation of matrix differential equations, Proc. Amer. Math. Soc. 8 (1957), 510-518. (1957) MR0087821
  3. O. Borůvka, Lineare Differentialtransformationen 2. Ordnung, VEB Deutscher Verlag der Wissenschaften, Berlin 1967. (1967) MR0236448
  4. W. A. Coppel, Disconjugacy, Lectures Notes in Mathematics 220, Springer Verlag, Berlin-New York-Heidelberg 1971. (1971) Zbl0224.34003MR0460785
  5. O. Došlý, On transformation of self-adjoint linear differential systems and their reciprocals, to appear. MR2170475
  6. P. Hartman, Self-adjoint, nonoscillatory systems of ordinary, second order, linear equations, Duke J. Math. 24 (1957), 25-35. (1957) MR0082591
  7. W. T. Reid, A Prüfer transformation for matrix differential systems, Pacific J. Math. 8 (1958), 575-584. (1958) MR0099474
  8. W. T. Reid, Sturmian Theory for Ordinary Differential Equations, John Wiley, New York 1980 Zbl0459.34001MR0606199
  9. R. L. Sternberg, Variational methods and non-oscillatory theorems for systems of differential equations, Duke J. Math. 19 (1952), 311-322. (1952) MR0048668

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.