Remarks on Hamiltonian properties of squares of graphs
Archivum Mathematicum (1989)
- Volume: 025, Issue: 1-2, page 61-72
- ISSN: 0044-8753
Access Full Article
topHow to cite
topReferences
top- G. Chartrand A. M. Hobbs H. A. Jung S. F. Kapoor, C. St. J. A. Nash-Williams, The square of a block is Hamiltonian connected;, J. Combinatorial Theory B, 16, 1974, 290-292. (1974) MR0345865
- H. Fleischner, On spanning subgraphs of a connected bridgeless graph and their application to DT-graphs;, J. Combinatorial Theory B, 16, No. 1, 1974, 17-28. (1974) Zbl0256.05120MR0332572
- H. Fleischner, The square of every two-connected graph is Hamiltonian;, J. Combinatorial Theory 3, 16, No. 1, 1974, 29-34. (1974) Zbl0256.05121MR0332573
- C. St. J. A. Nash-Williams, Problem No. 48; Theory of graphs, (edited by P. Erdös and G. Katona), New York, Academic Press 1968. (1968)
- M. D. Plummer, On minimal blocks;, Trans. Ameг. Math. Soc. 134, 1968, 85-94. (1968) Zbl0187.21101MR0228369
- St. Říha, A new proof of the theorem by Fleischner;, to appeaг.
- M. Sekanina, Problem No. 28, Theory of graphs and its Applications;, Czechoslovak. Acad. of Sciences, Prague, 1964. (1964)
- Z. Skupien T. Traczyk, [unknown], Personal communication.