Nonexistence of classical solutions of the Dirichlet problem for fully nonlinear elliptic equations

N. Kutev

Archivum Mathematicum (1991)

  • Volume: 027, Issue: 1-2, page 31-42
  • ISSN: 0044-8753

How to cite

top

Kutev, N.. "Nonexistence of classical solutions of the Dirichlet problem for fully nonlinear elliptic equations." Archivum Mathematicum 027.1-2 (1991): 31-42. <http://eudml.org/doc/18312>.

@article{Kutev1991,
author = {Kutev, N.},
journal = {Archivum Mathematicum},
keywords = {Monge-Ampère type equations; comparison principle; existence; fully nonlinear, nonuniformly elliptic equations},
language = {eng},
number = {1-2},
pages = {31-42},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Nonexistence of classical solutions of the Dirichlet problem for fully nonlinear elliptic equations},
url = {http://eudml.org/doc/18312},
volume = {027},
year = {1991},
}

TY - JOUR
AU - Kutev, N.
TI - Nonexistence of classical solutions of the Dirichlet problem for fully nonlinear elliptic equations
JO - Archivum Mathematicum
PY - 1991
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 027
IS - 1-2
SP - 31
EP - 42
LA - eng
KW - Monge-Ampère type equations; comparison principle; existence; fully nonlinear, nonuniformly elliptic equations
UR - http://eudml.org/doc/18312
ER -

References

top
  1. Bernstein S., Conditions necessаires et suffisаntes pour lа possibilite du probleme de Dirichlet, C. R. Acad. Sci. Paris, 150, (1910), 514-515. (1910) 
  2. Bernstein S., Sur les equаtions du cаlcul des vаriаtions, Ann. Ѕci. Ecole Norm. Ѕup., 29, (1912), 431-485. (1912) MR1509153
  3. Evans L. C., Clаssicаl solutions of fully, nonlineаr convex, second order elliptic equаtions, Comm. Pure Appl. Math. 25, (1982), 333-363. (1982) MR0649348
  4. Gilbarg D., Trudinger N. S., Elliptic pаrtiаl differentiаl equаtions of second order, Ѕpringer Verlag, New York, 1983. (1983) MR0737190
  5. Ivanov A. V., Quаsilineаr degerаte аnd nonuniformly elliptic аnd pаrаbolic equаtions of second order, Trudy Mat. Inst. Ѕteklov (in Russian). 
  6. Krylov N. V., Ѕafonof M. V., Certаin properties of solutions of pаrаbolic equаtions with meаsurаble coefficients, Izvestia Acad. Nauk ЅЅЅR, 40, (1980), 161-175. (1980) 
  7. Krylov N. V., On degenerаte nonlineаr elliptic equаtions I, Mat. Ѕb. 120 (162), (1983) 311-330, II. Mat. Ѕb. 121 (163), (1983), 211-232. (1983) 
  8. Kutev N., Grаdient estimаtes for equаtion of Monge-Ampere type, to appear. 
  9. Kutev N., Existence аnd nonexistence of clаssicаl solutions of the Dirichlet problem for а clаss off ully nonlineаry nonuniformly elliptic equаtions, to appear. 
  10. Ladyzhenskaya O. A., Uraľtseva N. N., Lineаr аnd quasilineаr elliptic equаtions, Acad. Press, New York, 1968. (1968) 
  11. Ѕeгrin J., The problem of Dirichlet for quаsilineаr elliptic differentiаl equаtions with mаny independent vаriаbles, Philos. Tгans. Roy. Ѕoc., London, Ѕer. A 264, (1969), 413-496. (1969) 
  12. Trudinger N. Ѕ., Fully nonlineаr, uniformly elliptic equаtions under nаturаl structure conditions, Tгans. Amer. Math. Ѕoc. 287, (2), (1983), 751-769. (1983) MR0701522
  13. Tгudinger N. Ѕ., Urbas J. I. E., The Dirichlet problem for the equаtion of prescribed Gаus curvаture, Bull. Austral. Math. Ѕoc. 28, (1983), 217-231. (1983) MR0729009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.