Spectral invariant of the zeta function of the Laplacian on Sp ( r + 1 ) / Sp ( 1 ) × Sp ( r )

Neelacanta Sthanumoorthy

Archivum Mathematicum (1991)

  • Volume: 027, Issue: 1-2, page 95-104
  • ISSN: 0044-8753

How to cite

top

Sthanumoorthy, Neelacanta. "Spectral invariant of the zeta function of the Laplacian on $\operatorname{Sp}(r+1)/\operatorname{Sp}(1)\times \operatorname{Sp}(r)$." Archivum Mathematicum 027.1-2 (1991): 95-104. <http://eudml.org/doc/18319>.

@article{Sthanumoorthy1991,
author = {Sthanumoorthy, Neelacanta},
journal = {Archivum Mathematicum},
keywords = {eigenvalues of the Laplace-Beltrami operator; zeta function; spectral invariant},
language = {eng},
number = {1-2},
pages = {95-104},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Spectral invariant of the zeta function of the Laplacian on $\operatorname\{Sp\}(r+1)/\operatorname\{Sp\}(1)\times \operatorname\{Sp\}(r)$},
url = {http://eudml.org/doc/18319},
volume = {027},
year = {1991},
}

TY - JOUR
AU - Sthanumoorthy, Neelacanta
TI - Spectral invariant of the zeta function of the Laplacian on $\operatorname{Sp}(r+1)/\operatorname{Sp}(1)\times \operatorname{Sp}(r)$
JO - Archivum Mathematicum
PY - 1991
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 027
IS - 1-2
SP - 95
EP - 104
LA - eng
KW - eigenvalues of the Laplace-Beltrami operator; zeta function; spectral invariant
UR - http://eudml.org/doc/18319
ER -

References

top
  1. M. F. Atiyah V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemannian geometry, Bull. Lon. Math. Soc., Vol. 5, Part 2, No. 14 (1973), 229-234. (1973) MR0331443
  2. M. F. Atiyah V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge. Philos. Soc. 77 (1975), 43-69. (1975) MR0397797
  3. M. F. Atiyah V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemannian geometry II, Math. Proc. Cambridge. Philos. Soc. 78 (1975), 405-432. (1975) MR0397798
  4. M. F. Atiyah V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemannian geometry III, Math. Pгoc. Cambгidge. Philos. Soc. 79 (1976), 71-99. (1976) MR0397799
  5. A. Ikeda, Y. Taniguchi, Spectra and eigen forms of the Laplacian on S n and P n ( C ) , Osaka J. Math. 15 (1978), 515-546. (1978) MR0510492
  6. K. Mahler, Über eine Satz von Mellin, Mathematische Annalen 100 Band (1928), 384-398. (1928) MR1512491
  7. R. T. Seeley, Complex powers of an elliptic operator, Proc. Symposium in Pure Math., Vol. 10, Ameг. Math. Soc. (1967), 288-307. (1967) Zbl0159.15504MR0237943
  8. N. Sthanumoorthy, Spectra of de Rham Hodge operator on SO ( n + 2 ) / SO ( 2 ) × SO ( n ) , Bull. Sc. Math. 2 serie 108 (1984), 297-320. (1984) MR0771915
  9. N. Sthanumoorthy, Spectra of de Rham Hodge operator on Sp ( n + 1 ) / Sp ( 1 ) × Sp ( n ) , Bull. Soc. Math. (1986), Bull. Sc. Math; 2 Serie, Vol. 111, 1987, 201-227. (1986) MR0903337
  10. N. Sthanumoorthy, Spectral invariant of the Zeta function of the Laplacian on S 4 n - 1 , Indian J. Puгe Appl. Math., Vol. 19(5), 1988, 407-414. (19(5) MR0941426
  11. N. Sthanumoorthy, Spectral invariants for the non singular Quadric Hyper-Surface, Bull. Sc. Math. 2 Serie, 114, 1990, 361-371. (1990) MR1069194
  12. E. C. Titchmarsch, The theory of the Riemann Zeta function, Oxford at the clarendon Press, Reprinted 1967. (1967) 
  13. C. Tsukamoto, Spectra of Laplace Beltrami operators on SO ( n + 2 ) / SO ( 2 ) × SO ( n ) and Sp ( n + 1 ) / Sp ( 1 ) × Sp ( n ) , Osaka. J. Math. 18 (1981), 407-426. (1981) MR0628842

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.