On the existence of ψ -minimal viable solutions for a class of differential inclusions

Nikolaos S. Papageorgiou

Archivum Mathematicum (1991)

  • Volume: 027, Issue: 3-4, page 175-182
  • ISSN: 0044-8753

How to cite

top

Papageorgiou, Nikolaos S.. "On the existence of $\psi $-minimal viable solutions for a class of differential inclusions." Archivum Mathematicum 027.3-4 (1991): 175-182. <http://eudml.org/doc/18329>.

@article{Papageorgiou1991,
author = {Papageorgiou, Nikolaos S.},
journal = {Archivum Mathematicum},
keywords = {differential inclusion; Banach space; continuous multifunction; measure of noncompactness; Bouligand's tangent cone; tangency condition},
language = {eng},
number = {3-4},
pages = {175-182},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the existence of $\psi $-minimal viable solutions for a class of differential inclusions},
url = {http://eudml.org/doc/18329},
volume = {027},
year = {1991},
}

TY - JOUR
AU - Papageorgiou, Nikolaos S.
TI - On the existence of $\psi $-minimal viable solutions for a class of differential inclusions
JO - Archivum Mathematicum
PY - 1991
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 027
IS - 3-4
SP - 175
EP - 182
LA - eng
KW - differential inclusion; Banach space; continuous multifunction; measure of noncompactness; Bouligand's tangent cone; tangency condition
UR - http://eudml.org/doc/18329
ER -

References

top
  1. J. P.Aubin, Slow and heavy viable trajectories of controlled problems. Smooth viability domain, In Multifunction and Integrals, ed. G. Salinetti, Lecture Notes in Math., vol. 1091, Springer, Berlin (1984), 105-116. (1984) Zbl0558.49017MR0785578
  2. J. P. Aubin A. Cellina, Differential Inclusions, Springer, Berlin (1984). (1984) MR0755330
  3. J. P. Aubin I. Ekeland, Applied Analysis, Wiley, New York (1984). (1984) MR0749753
  4. K. Deimling, Multivalued differential equations on closed sets, Diff. and Integral Equations 1 (1988), 23-30. (1988) Zbl0715.34114MR0920486
  5. J. P. Delahaye J. Denel, The continuities of the point to set maps, definitions and equivalences, Math. Progr. Study 10 (1979), 8-12. (1979) 
  6. M. Falcone P. Saint-Pierre, Slow and quasislow solutions of differential inclusions, Nonl. Anal. - T.M.A. 11 (1987), 367-377. (1987) Zbl0628.34013MR0881724
  7. C. Henry, Differential equations with discontinuous right hand side for planning procedures, J. Econ. Theory 4 (1972), 545-551. (1972) MR0449534
  8. F. Hiai H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, J. Mult. Anal. 7 (1977), 149-182. (1977) Zbl0368.60006MR0507504
  9. E. Klein A. Thompson, Theory of Correspondences, Wiley, New York (1984). (1984) Zbl0556.28012MR0752692
  10. K. Kuratowski, Topology I, Academic Press, New York (1966). (1966) MR0217751
  11. U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. Math. 3 (1969), 510-585. (1969) Zbl0192.49101MR0298508
  12. N. S. Papageorgiou, Convergence of Banach space valued integrable multifunction, Intern. J. Math and Math. Sci 10 (1987), 433-442. (1987) MR0896595
  13. N. S. Papageorgiou, Viable and periodic solutions for differential inclusions in Banach spaces, Kobe J. Math. 5 (1988), 29-42. (1988) Zbl0674.34014MR0988577
  14. T. Zolezzi, Well posedness and stability analysis in optimization, in the Proceedings of the "Fermat Days", ed. J.-B. Hiriat-Urruty, North Holland, New York (1986), 305-320. (1986) Zbl0624.49011MR0874371

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.