Interprétation géométrique des processus probabilistiques continus

G. G. Vranceanu

  • Publisher: Gauthier-Villars, 1969

How to cite

top

Vranceanu, G. G.. Interprétation géométrique des processus probabilistiques continus. 1969. <http://eudml.org/doc/192686>.

@book{Vranceanu1969,
author = {Vranceanu, G. G.},
keywords = {probability theory},
language = {fre},
publisher = {Gauthier-Villars},
title = {Interprétation géométrique des processus probabilistiques continus},
url = {http://eudml.org/doc/192686},
year = {1969},
}

TY - BOOK
AU - Vranceanu, G. G.
TI - Interprétation géométrique des processus probabilistiques continus
PY - 1969
PB - Gauthier-Villars
LA - fre
KW - probability theory
UR - http://eudml.org/doc/192686
ER -

References

top
  1. [1] G. VRANCEANU et G. G. VRANCEANU, Probabilités et transport parallèle (C. R. Acad. Sc., t. 255, 1962, p. 40-41). Zbl0114.09201MR140143
  2. [2] G. G. VRANCEANU, Interpretări geometrice in teoria proceselor Markov, Studii şi cercetări matematice (Ed. Acad. R. P. R., t. 15, 1964, p. 15-43). Zbl0138.40902MR214136
  3. [3] M. FRÉCHET, Recherches théoriques modernes sur le calcul des probabilités, Gauthier-Villars, Paris, t. II, 1952, p. 219-255. Zbl0038.08304
  4. [4] O. ONICESCU, Calculul probabiliăţilor, Ed. Tehnică, Bucureşti, 1956. 
  5. [5] R. THEODORESCU, Asupra relaţiilor caracteristice ale laniurilor Markov, continue de multiplicitate p (Bul. st. Acad. R. P. R., Secţia de sşt. mat. şi fiz., t. 7, 1955, p. 763-775). Zbl0066.37801
  6. [6] J. L. DOOB, Stochastic Processes, John Wiley, New-York, 1958. Zbl0696.60003MR58896
  7. [7] J. ACZEL, Vorlesung über Funktionalgleichungen, Veb. Deutscher Verlag, 1961, p. 247. MR124647
  8. [8] J. ACZEL, Remarques algébriques sur la solution donnée par M. Fréchet à l'équation de Kolmogoroff (Publications mathém., t. 4, 1955, p. 35). Zbl0081.13502MR69129
  9. [9] A. KOLMOGOROV, Uber die analytischen Methoden in der Wahrschein lichkeisrechnung (Math. Ann., t. 104, 1931, p. 415-458). Zbl0001.14902MR1512678JFM57.0613.03
  10. [10] J. Th. RUNNENBURG, On Elfeving's Problem of Imbedding a time Discrete Markov Chain in a Time continuous one for finitely many States (Indagationes Mathematicae, Amsterdam, vol. 24, 1962, p. 5). Zbl0113.33702MR145579
  11. [11] G. Ciucu et R. THEODORESCU, Procese eu legăaturi complete, Ed. Tehnică, Bucureşti, 1961, p. 203-204. 
  12. [12] G. G. VRANCEANU, Théorie géométrique des chaînes probabilistiques, Bruxelles (Bull. Classe des Sciences, 5e série, t. 51, 1965, p. 1158-1167). Zbl0203.17902MR203817
  13. [13] G. VRANCEANU, Leçons de Géométrie différentielle, t. I, Ed. Acad. R. P. R. Bucuresti et Gauthier-Villars, Paris, 1957. MR124823
  14. [14] O. ONICESCU, G. MIHOC et IONESCU TULCEA, Calculul probabilităţilor şi aplicaţii, Ed. Acad. R. P. R., 1954. 
  15. [15] G. VRANCEANU, Leçons de Géométrie différentielle, t. III, Ed. Acad. R. S. R. et Gauthier-Villars, Paris, 1964. Zbl0133.14802MR177352
  16. [16] G. VRANCEANU, TH. HANGAN et C. TELEMAN, Recherches de Géométrie différentielle en Roumanie (Revue Math., 1966, p. 1-15). Zbl0143.24502
  17. [17] G. G. VRANCEANU, Processus de Markov associés à certains groupes de Lie (Rev. Roum. de math. pures et appl. 8e série, t. 13, 1968, p. 1195-1200). Zbl0245.60009MR240872
  18. [18] G. G. VRANCEANU, Processi Markov associati ad una curva piana (Boll. U. M. I., (4), vol. II, 1968, p. 227-231, Bologna]. Zbl0174.49701MR226731
  19. [19] A. T. BHARUCHA-REID, Elements of the Theory of Markov Processes and their applications, Mc Graw-Hill, New-York, 1960. Zbl0095.32803MR112177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.