Brève communication. Sur la séparation des valeurs propres d'une matrice positive

J. F. Maitre

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1970)

  • Volume: 4, Issue: R3, page 118-124
  • ISSN: 0764-583X

How to cite

top

Maitre, J. F.. "Brève communication. Sur la séparation des valeurs propres d'une matrice positive." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 4.R3 (1970): 118-124. <http://eudml.org/doc/193147>.

@article{Maitre1970,
author = {Maitre, J. F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {fre},
number = {R3},
pages = {118-124},
publisher = {Dunod},
title = {Brève communication. Sur la séparation des valeurs propres d'une matrice positive},
url = {http://eudml.org/doc/193147},
volume = {4},
year = {1970},
}

TY - JOUR
AU - Maitre, J. F.
TI - Brève communication. Sur la séparation des valeurs propres d'une matrice positive
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1970
PB - Dunod
VL - 4
IS - R3
SP - 118
EP - 124
LA - fre
UR - http://eudml.org/doc/193147
ER -

References

top
  1. [1] F. L. BAUER, An elementary proof of the Hopf inequality for positive operators, Num. Math., 331-337 (1965). Zbl0148.38103MR188785
  2. [2] F. L. BAUER, E. DEUTSCH und J. STOER, Abschätzungen für die Eigenwerte positiver linearer Operatoren, Linear Algebra and its applications, 2, 275-301 (1969). Zbl0199.45102MR245587
  3. [3] G. BIRKHOFF, Extensions of Jentzch's Theorem, Trans. Amer. Math. Soc., 85, 219-227 (1957). Zbl0079.13502MR87058
  4. [4] E. DEUTSCH, Zum Perron-Eigenwert positiver linearer Abbildungen , Dissertation, München (1967). 
  5. [5] G. FROBENIUS, Uber Matrizen aus positiven Elementen, Akad. Wiss. Berlin, I, 514-518 (1908) ; II, 456-477 (1912). JFM40.0202.02
  6. [6] E. HOPF, An inequality for positive linear integral operators, J. of Math. and Mech., 12, 683-692 (1963). Zbl0115.32501MR165325
  7. [7] M. G. KREIN and M. A. RUTMAN, Linear operators leaving invariant a cone in a Banach space, Uspehi Math. Nauk (N.S.) 3, n° 1 (23), 3-95 (1948). Amer Math. Soc. Transl. ser., 1, 10, 199-325 (1950). Zbl0030.12902MR27128
  8. [8] M. S. LYNN and W. P. TIMLAKE, Bounds for Perron eigenvectors and subdominant eigenvalues of positive matrices, Linear Algebra and its Applications, 2, 143-152 (1969). Zbl0174.31703MR240123
  9. [9] J. F. MAITRE, Semi-normes et localisation des valeurs propres d'un opérateur, Séminaire d'Analyse Numérique, Grenoble (1967). 
  10. [10] J. F. MAITRE, Sur certaines fonctionnelles dans un espace préordonné et l'équivalence entre semi-normes et oscillation, Séminaire d'Analyse Numérique, Grenoble (1970). 
  11. [11] M. MARCUS and H. MINC, A survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston (1964). Zbl0126.02404MR162808
  12. [12] A. M. OSTROWSKI, On positive matrices, Math. Ann., 150, pp. 276-284 (1963). Zbl0115.24803MR148680
  13. [13] A. M. OSTROWSKI, Positive Matrices and Functional Analysis, in : Recent advances in Matrix Theory. Schneider Ed. Madison. Univ. of Wisconsin Press (1964). Zbl0135.01504MR169858
  14. [14] O. PERRON, Zur Theorie der Matrizen, Math. Ann., 64, 248-263 (1908). JFM38.0202.01
  15. [15] H. H. SCHAEFER, Topological Vector Spaces, Mac Millan Co., New York (1966). Zbl0141.30503MR193469
  16. [16] H. H. SCHAEFER, Eine Abschätzung der nichttrivialen Eigenwerte stochastischer Matrizen, Numer. Math., 15, 219-223 (1970). Zbl0206.46401MR275653
  17. [17] R. S. VARGA, Matrix Iterative Analysis, Prentice Hall, Inc. Englewood Cliffs, New Jersey (1962). Zbl0133.08602MR158502
  18. [18] H. WIELANDT, Unzerlegbare nich negative Matrizen, Math. Z., 52, 642-648 (1950). Zbl0035.29101MR35265

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.