Brève communication. Contrôlabilité de systèmes linéaires par des commandes Bang-Bang

Claude Lobry

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1970)

  • Volume: 4, Issue: R3, page 135-140
  • ISSN: 0764-583X

How to cite

top

Lobry, Claude. "Brève communication. Contrôlabilité de systèmes linéaires par des commandes Bang-Bang." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 4.R3 (1970): 135-140. <http://eudml.org/doc/193150>.

@article{Lobry1970,
author = {Lobry, Claude},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {fre},
number = {R3},
pages = {135-140},
publisher = {Dunod},
title = {Brève communication. Contrôlabilité de systèmes linéaires par des commandes Bang-Bang},
url = {http://eudml.org/doc/193150},
volume = {4},
year = {1970},
}

TY - JOUR
AU - Lobry, Claude
TI - Brève communication. Contrôlabilité de systèmes linéaires par des commandes Bang-Bang
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1970
PB - Dunod
VL - 4
IS - R3
SP - 135
EP - 140
LA - fre
UR - http://eudml.org/doc/193150
ER -

References

top
  1. [1] LEE-MARKUS, Foundations of optimal control theory, Wiley, 1967. Zbl0159.13201MR220537
  2. [2] HERMES-LA SALLE, Functionnal analysis and time optimal control, Academic Press, 1969. Zbl0203.47504MR420366
  3. [3] MILNOR, Topology from the differential view point, The University Press of Virginia,Charlottesville. 
  4. [4] HALKIN, « On a generalisation of a theorem of Liapunov », J. Math. Anal. and Appli., 10 (325-329) (1965). Zbl0133.07801MR173959
  5. [5] HALKIN, « A generalisation of La Salle's Bang-Bang principle », J. Siam on Control, n° 2 (1965). Zbl0163.33003
  6. [6] KALMAN, HO, NARENDA, « Controlability of linear dynamical Systems », Contribution to differential equations n° 1, pp. 189-213. Zbl0151.13303MR155070
  7. [7] LA SALLE, The time optimal control problem. Theory of nonlinear oscillations, vol. 4, pp. 29-52, Princeton Univ. Press, 1959. 
  8. [8] LOBRY, « Controlabilité des systèmes no linnéaires », J. Siam on Control, n° 8, 4, 1970, pp. 573-605. Zbl0207.15201MR271979

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.