Stability and duality in convex minimization problems
- Volume: 5, Issue: R2, page 3-42
- ISSN: 0764-583X
Access Full Article
topHow to cite
topJoly, J. L., and Laurent, P. J.. "Stability and duality in convex minimization problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 5.R2 (1971): 3-42. <http://eudml.org/doc/193174>.
@article{Joly1971,
author = {Joly, J. L., Laurent, P. J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R2},
pages = {3-42},
publisher = {Dunod},
title = {Stability and duality in convex minimization problems},
url = {http://eudml.org/doc/193174},
volume = {5},
year = {1971},
}
TY - JOUR
AU - Joly, J. L.
AU - Laurent, P. J.
TI - Stability and duality in convex minimization problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1971
PB - Dunod
VL - 5
IS - R2
SP - 3
EP - 42
LA - eng
UR - http://eudml.org/doc/193174
ER -
References
top- 1. M. ATTÉIA, Fonctions spline avec contraintes linéaires type inégalité. Congrèsde l'Afiro, Nancy, mai 1967, 1-42 à 1-54.
- 2. M. ATTEIA, Fonctions spline définies sur un ensemble convexe, Num. Math., 12 (1968), 192-210. Zbl0186.45202MR257615
- 3. R. W. COTTLE, Symmetriec dual quadratic programs, Quart. Appl. Math., 21 (1963), 237-243. Zbl0127.36802MR156707
- 4. G. DANTZIG, E. EISENBERG and R. W. COTTLE, Symmetric dual non-linear programs, Pac. J. Math., 15 (1965), 809-812. Zbl0136.14001MR202471
- 5. J. E. FALK, Lagrange multipliers and non-linear programming, J. Math. Anal.Appl., 19 (1967), 141-159. Zbl0154.44803MR211753
- 6. W. FENCHEL, On conjugate convex fonctions, Canad. J. Math., 1 (1949), 73-77. Zbl0038.20902MR28365
- 7. W. FENCHEL, Convex cones, sets and fonctions. Mimeographed lecture notes, Princeton University (1951). Zbl0053.12203
- 8. D. GALE, A geometric duality theorem with economic application, Rev. Econ. Studies, 34 (1967), 19-24.
- 9. D. GALE, H. W. KUHN and A. W. TUCKER, Linear programming and the theory of games. In « Activity Analysis of Production and Allocation », T. C. Koopmans éd., Wiley, N.Y. (1951). Zbl0045.09709MR46018
- 10. P. HUARD, Dual programs, IBM J. Res. Develop., 6 (1962), 137-139. Zbl0116.12403
- 11. P. HUARD, Dual programs. In « Recent Advances in Math. Programming », R. L. Graves and P. Wolfe, éd., McGraw-Hill, N.Y. (1963). Zbl0225.90038MR156708
- 12. W. L. JONES, On conjugate f unctionals. Dissertation, Columbia University (1960).
- 13. J. L. JOLY, Thèse, Université de Grenoble (1970).
- 14. H. W. KUHN and A. W. TUCKER, Non linear programming. In « Proc. of the Second Berkeley Symp. on Math. Stat. and Prob. », Univ. of Calif. Press, Berkeley (1951). Zbl0044.05903
- 15. P. J. LAURENT, Charakterisierung and Konstruktion einer besten Approximation in einer konvexen Teilmenge eines normierten Raumes. Tagung, Oberwolfach, Nov. 1967, in I.S.N.M. 12 (1969), 91-102, Birkhauser Verlag. Zbl0189.35102MR256042
- 16. P. J. LAURENT, Construction of spline fonctions in a convex set. In « Approximations with special emphasis on spline functions. » I. J. Schoenberg, éd., Acad. Press (1969). Zbl0271.41012MR252932
- 17. O. L. MANGASARIAN, Duality in non-linear programming, Quart. Appl. Math., 20 (1962), 300-302. Zbl0113.35703
- 18. O. L. MANGASARIAN, Minimax and duality in non-linear programming, J. Math. Anal. Appl., 11 (1965), 504-518. Zbl0131.18601
- 19. J. J. MOREAU, Fonctionnelles convexes. Séminaire sur les équations aux dérivées partielles, Collège de France, Paris (1966).
- 20. K. RITTER, Generalized spline interpolation and non-linear programming. In « Approximations with special emphasis on spline functions », I. J. Schoenberg éd., Acad. Press (1969). Zbl0271.41007MR374763
- 21. R. T. ROCKAFELLAR, Convex functions and dual extremum problems. Thesis, Harvard (1963).
- 22. R. T. ROCKAFELLAR, Duality theorems for convex fonctions, Bull. Amer. Math, Soc, 70 (1964), 189-192. Zbl0121.14803MR165429
- 23. R. T. ROCKAFELLAR, Duality and stability in extremwn problems involving convex functions, Pac. J. Math., 21 (1967), 167-187. Zbl0154.44902MR211759
- 24. R. T. ROCKAFELLAR, Convex Analysis, Princ. Univ. Press (1970). Zbl0193.18401MR274683
- 25. R. T. ROCKAFELLAR, Conjugate convex functions in optimal control and the calculus of variations (to appear). Zbl0218.49004MR266020
- 26. R. T. ROCKAFELLAR, Generalized Hamiltonian equations for convex problems of Lagrange (to appear). Zbl0199.43002MR276853
- 27. R. T. ROCKAFELLAR, Some convex programswhose duals are linearly constrained. In « Nonlinear programming symposium », Madison, May 4-6, 1970. Zbl0252.90046
- 28. R. T. ROCKAFELLAR, Convex functions and duality in optimization problems and dynamics. Lecture Notes in Operations Research and Mathematical Economics, 11, Springer Verlag (1969). Zbl0186.23901MR334940
- 29. M. SLATER, Lagrange multipliers revisited : a contribution to non-linear programming. Cowles Commission Discussion Paper, Math. 403 (1950).
- 30. J. STOER, Duality in non-linear programming and the minimax theorem, Num. Math., 5 (1963), 371-379. Zbl0152.38104MR172719
- 31. J. STOER, Uber einen Dualitatssatz der nichtlinearen Programmierung, Num. Math., 6 (1964), 55-58. Zbl0173.47403MR172720
- 32. R. J. B. WETS and R. M. Van SLYKE, A duality theory for abstract mathematical programs with applications to optimal control theory, J. Math. Anal. Appl., 22 (1968), 679-706. Zbl0157.16004MR229473
- 33. P. WOLFE, A duality theorem for non-linear programming, Quart. Appl. Math., 19 (1961), 239-244. Zbl0109.38406MR135625
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.