Stability and duality in convex minimization problems

J. L. Joly; P. J. Laurent

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1971)

  • Volume: 5, Issue: R2, page 3-42
  • ISSN: 0764-583X

How to cite

top

Joly, J. L., and Laurent, P. J.. "Stability and duality in convex minimization problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 5.R2 (1971): 3-42. <http://eudml.org/doc/193174>.

@article{Joly1971,
author = {Joly, J. L., Laurent, P. J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R2},
pages = {3-42},
publisher = {Dunod},
title = {Stability and duality in convex minimization problems},
url = {http://eudml.org/doc/193174},
volume = {5},
year = {1971},
}

TY - JOUR
AU - Joly, J. L.
AU - Laurent, P. J.
TI - Stability and duality in convex minimization problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1971
PB - Dunod
VL - 5
IS - R2
SP - 3
EP - 42
LA - eng
UR - http://eudml.org/doc/193174
ER -

References

top
  1. 1. M. ATTÉIA, Fonctions spline avec contraintes linéaires type inégalité. Congrèsde l'Afiro, Nancy, mai 1967, 1-42 à 1-54. 
  2. 2. M. ATTEIA, Fonctions spline définies sur un ensemble convexe, Num. Math., 12 (1968), 192-210. Zbl0186.45202MR257615
  3. 3. R. W. COTTLE, Symmetriec dual quadratic programs, Quart. Appl. Math., 21 (1963), 237-243. Zbl0127.36802MR156707
  4. 4. G. DANTZIG, E. EISENBERG and R. W. COTTLE, Symmetric dual non-linear programs, Pac. J. Math., 15 (1965), 809-812. Zbl0136.14001MR202471
  5. 5. J. E. FALK, Lagrange multipliers and non-linear programming, J. Math. Anal.Appl., 19 (1967), 141-159. Zbl0154.44803MR211753
  6. 6. W. FENCHEL, On conjugate convex fonctions, Canad. J. Math., 1 (1949), 73-77. Zbl0038.20902MR28365
  7. 7. W. FENCHEL, Convex cones, sets and fonctions. Mimeographed lecture notes, Princeton University (1951). Zbl0053.12203
  8. 8. D. GALE, A geometric duality theorem with economic application, Rev. Econ. Studies, 34 (1967), 19-24. 
  9. 9. D. GALE, H. W. KUHN and A. W. TUCKER, Linear programming and the theory of games. In « Activity Analysis of Production and Allocation », T. C. Koopmans éd., Wiley, N.Y. (1951). Zbl0045.09709MR46018
  10. 10. P. HUARD, Dual programs, IBM J. Res. Develop., 6 (1962), 137-139. Zbl0116.12403
  11. 11. P. HUARD, Dual programs. In « Recent Advances in Math. Programming », R. L. Graves and P. Wolfe, éd., McGraw-Hill, N.Y. (1963). Zbl0225.90038MR156708
  12. 12. W. L. JONES, On conjugate f unctionals. Dissertation, Columbia University (1960). 
  13. 13. J. L. JOLY, Thèse, Université de Grenoble (1970). 
  14. 14. H. W. KUHN and A. W. TUCKER, Non linear programming. In « Proc. of the Second Berkeley Symp. on Math. Stat. and Prob. », Univ. of Calif. Press, Berkeley (1951). Zbl0044.05903
  15. 15. P. J. LAURENT, Charakterisierung and Konstruktion einer besten Approximation in einer konvexen Teilmenge eines normierten Raumes. Tagung, Oberwolfach, Nov. 1967, in I.S.N.M. 12 (1969), 91-102, Birkhauser Verlag. Zbl0189.35102MR256042
  16. 16. P. J. LAURENT, Construction of spline fonctions in a convex set. In « Approximations with special emphasis on spline functions. » I. J. Schoenberg, éd., Acad. Press (1969). Zbl0271.41012MR252932
  17. 17. O. L. MANGASARIAN, Duality in non-linear programming, Quart. Appl. Math., 20 (1962), 300-302. Zbl0113.35703
  18. 18. O. L. MANGASARIAN, Minimax and duality in non-linear programming, J. Math. Anal. Appl., 11 (1965), 504-518. Zbl0131.18601
  19. 19. J. J. MOREAU, Fonctionnelles convexes. Séminaire sur les équations aux dérivées partielles, Collège de France, Paris (1966). 
  20. 20. K. RITTER, Generalized spline interpolation and non-linear programming. In « Approximations with special emphasis on spline functions », I. J. Schoenberg éd., Acad. Press (1969). Zbl0271.41007MR374763
  21. 21. R. T. ROCKAFELLAR, Convex functions and dual extremum problems. Thesis, Harvard (1963). 
  22. 22. R. T. ROCKAFELLAR, Duality theorems for convex fonctions, Bull. Amer. Math, Soc, 70 (1964), 189-192. Zbl0121.14803MR165429
  23. 23. R. T. ROCKAFELLAR, Duality and stability in extremwn problems involving convex functions, Pac. J. Math., 21 (1967), 167-187. Zbl0154.44902MR211759
  24. 24. R. T. ROCKAFELLAR, Convex Analysis, Princ. Univ. Press (1970). Zbl0193.18401MR274683
  25. 25. R. T. ROCKAFELLAR, Conjugate convex functions in optimal control and the calculus of variations (to appear). Zbl0218.49004MR266020
  26. 26. R. T. ROCKAFELLAR, Generalized Hamiltonian equations for convex problems of Lagrange (to appear). Zbl0199.43002MR276853
  27. 27. R. T. ROCKAFELLAR, Some convex programswhose duals are linearly constrained. In « Nonlinear programming symposium », Madison, May 4-6, 1970. Zbl0252.90046
  28. 28. R. T. ROCKAFELLAR, Convex functions and duality in optimization problems and dynamics. Lecture Notes in Operations Research and Mathematical Economics, 11, Springer Verlag (1969). Zbl0186.23901MR334940
  29. 29. M. SLATER, Lagrange multipliers revisited : a contribution to non-linear programming. Cowles Commission Discussion Paper, Math. 403 (1950). 
  30. 30. J. STOER, Duality in non-linear programming and the minimax theorem, Num. Math., 5 (1963), 371-379. Zbl0152.38104MR172719
  31. 31. J. STOER, Uber einen Dualitatssatz der nichtlinearen Programmierung, Num. Math., 6 (1964), 55-58. Zbl0173.47403MR172720
  32. 32. R. J. B. WETS and R. M. Van SLYKE, A duality theory for abstract mathematical programs with applications to optimal control theory, J. Math. Anal. Appl., 22 (1968), 679-706. Zbl0157.16004MR229473
  33. 33. P. WOLFE, A duality theorem for non-linear programming, Quart. Appl. Math., 19 (1961), 239-244. Zbl0109.38406MR135625

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.