Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions
- Volume: 6, Issue: R1, page 15-26
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBereanu, Bernard. "Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 6.R1 (1972): 15-26. <http://eudml.org/doc/193197>.
@article{Bereanu1972,
author = {Bereanu, Bernard},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R1},
pages = {15-26},
publisher = {Dunod},
title = {Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions},
url = {http://eudml.org/doc/193197},
volume = {6},
year = {1972},
}
TY - JOUR
AU - Bereanu, Bernard
TI - Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1972
PB - Dunod
VL - 6
IS - R1
SP - 15
EP - 26
LA - eng
UR - http://eudml.org/doc/193197
ER -
References
top- [1] K. J. ARROW and A. C. ENTHOVEN, « Quasi-coneave programming », Econo-metrica, 29 (1961), 779-800. Zbl0104.14302MR138509
- [2] J. L. BAUNTFY, Nonlinear programming for models with joint constraints, in Abadie J. (ed) Integer and nonlinear programming, North-Holland (1970), 337-352. Zbl0334.90054
- [3] B. BEREANU, « Programme de risque minimal en programmation linéaire sto-chastique », C.R. Acad. Sci. Paris, 258 (1964), 5, 981-983. Zbl0123.37301MR167333
- [4] B. BEREANU, « On the composition of convex functions », Rev. Roum. Math.Pures AppL, 14 (1969), 1078-1084, Zbl0191.06204MR252586
- [5] C. R. BECTOR, « Indefinite quadratic programming with Standard errors in objective », Cahiers Centre d'Étude Recherche Opér. 10 (1968), 4, 247-253. Zbl0169.22202MR247876
- [6] C. BERGTHALLER, « A quadratic equivalent of the minimum risk problem », Rev. Roum. Math. Pures et Appl., 15 (1970), 17-23. Zbl0196.22901MR263424
- [7] A. CHARNES and W. W. COOPER, « Deterministic équivalents for optimizing and satisticing under chance constraints », Oper. Res. 11 (1963), 18-39. Zbl0117.15403MR153482
- [8] M. DRAGOMIRESCU, An algorithm for minimum risk solution of stochastic programming (to be published). Zbl0238.90053
- [9] W. FENCHEL, Convex cones, sets and functions, Princeton Univ., Princeton, 1953 (mimeographed). Zbl0053.12203
- [10] A. M. GEOFFRION, « Stochastic programming with aspiration or fracile criteria » Management Sci., 13 (1967), 672-679. Zbl0171.17602MR242487
- [11] M. HANSON, « Bounds for functionnaly convex optimal control problems », J. Matg. Anal. Appl., 8 (1964), 84-89. Zbl0117.35601MR158797
- [12] J.M. HENDERSON and R. QUANDT, Microeconomic theory, Mc Graw-Hill, New York, London, 1958 Zbl0224.90014
- [13] H. W. KUHN and A. W. TUCKER, Nonlinear programming, Proceed. Second Berkeley Symp. Math. Stat. Prob., Univ. Of California Press, Berkeley, 1951, 481-492. Zbl0044.05903MR47303
- [14] S. KARAMARDIAN, « Strictly quasi-convex (concave) functions and duality in mathematical programming », J. Math. Anal. Appl., 20 (1967), 344-358. Zbl0157.49603MR219315
- [15] S. KATAOKA, « Stochastic programming. Maximum probality model », Hitotsubashi J. Arts Sciences, 8 (1967), 51-59. Zbl0125.09601MR233587
- [16] O. MANGASARIAN, « Pseudo-convex functions », J. Siam Control, 8 (1965), 281-290. Zbl0138.15702MR191659
- [17] O. MANGASARIAN, « Convexity, pseudo-convexity and quasi-convexity of composite functions », Cahiers Centre d'Études Recherche Opér., 12 (1970). 114-122. Zbl0218.90042MR285276
- [18] B. MARTOS. « Quasi-convexity and quasi-monotonicity in non-linear programming », Studia Sci. Math. Hungarica, 2 (1967), 265-273. Zbl0178.22901MR224375
- [19] A. PREKOPA, Programming under probabilistic constraints and programming under constraints involving conditional expectations, 7th Mathematical Programming Symposium 1970, Abstracts, 107-109, North-Holland Amsterdam 1970.
- [20] P. A. SAMUELSON, Foundations of economic analysis, Harvard Univ. Press, Cambridge, 1963. Zbl0031.17401MR29145
- [21] J. STOER and C. WITZGALL, Convexity and optimization in finite dimensions I, Springer, New York, Berlin, 1970. Zbl0203.52203MR286498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.