Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions

Bernard Bereanu

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1972)

  • Volume: 6, Issue: R1, page 15-26
  • ISSN: 0764-583X

How to cite

top

Bereanu, Bernard. "Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 6.R1 (1972): 15-26. <http://eudml.org/doc/193197>.

@article{Bereanu1972,
author = {Bereanu, Bernard},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R1},
pages = {15-26},
publisher = {Dunod},
title = {Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions},
url = {http://eudml.org/doc/193197},
volume = {6},
year = {1972},
}

TY - JOUR
AU - Bereanu, Bernard
TI - Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1972
PB - Dunod
VL - 6
IS - R1
SP - 15
EP - 26
LA - eng
UR - http://eudml.org/doc/193197
ER -

References

top
  1. [1] K. J. ARROW and A. C. ENTHOVEN, « Quasi-coneave programming », Econo-metrica, 29 (1961), 779-800. Zbl0104.14302MR138509
  2. [2] J. L. BAUNTFY, Nonlinear programming for models with joint constraints, in Abadie J. (ed) Integer and nonlinear programming, North-Holland (1970), 337-352. Zbl0334.90054
  3. [3] B. BEREANU, « Programme de risque minimal en programmation linéaire sto-chastique », C.R. Acad. Sci. Paris, 258 (1964), 5, 981-983. Zbl0123.37301MR167333
  4. [4] B. BEREANU, « On the composition of convex functions », Rev. Roum. Math.Pures AppL, 14 (1969), 1078-1084, Zbl0191.06204MR252586
  5. [5] C. R. BECTOR, « Indefinite quadratic programming with Standard errors in objective », Cahiers Centre d'Étude Recherche Opér. 10 (1968), 4, 247-253. Zbl0169.22202MR247876
  6. [6] C. BERGTHALLER, « A quadratic equivalent of the minimum risk problem », Rev. Roum. Math. Pures et Appl., 15 (1970), 17-23. Zbl0196.22901MR263424
  7. [7] A. CHARNES and W. W. COOPER, « Deterministic équivalents for optimizing and satisticing under chance constraints », Oper. Res. 11 (1963), 18-39. Zbl0117.15403MR153482
  8. [8] M. DRAGOMIRESCU, An algorithm for minimum risk solution of stochastic programming (to be published). Zbl0238.90053
  9. [9] W. FENCHEL, Convex cones, sets and functions, Princeton Univ., Princeton, 1953 (mimeographed). Zbl0053.12203
  10. [10] A. M. GEOFFRION, « Stochastic programming with aspiration or fracile criteria » Management Sci., 13 (1967), 672-679. Zbl0171.17602MR242487
  11. [11] M. HANSON, « Bounds for functionnaly convex optimal control problems », J. Matg. Anal. Appl., 8 (1964), 84-89. Zbl0117.35601MR158797
  12. [12] J.M. HENDERSON and R. QUANDT, Microeconomic theory, Mc Graw-Hill, New York, London, 1958 Zbl0224.90014
  13. [13] H. W. KUHN and A. W. TUCKER, Nonlinear programming, Proceed. Second Berkeley Symp. Math. Stat. Prob., Univ. Of California Press, Berkeley, 1951, 481-492. Zbl0044.05903MR47303
  14. [14] S. KARAMARDIAN, « Strictly quasi-convex (concave) functions and duality in mathematical programming », J. Math. Anal. Appl., 20 (1967), 344-358. Zbl0157.49603MR219315
  15. [15] S. KATAOKA, « Stochastic programming. Maximum probality model », Hitotsubashi J. Arts Sciences, 8 (1967), 51-59. Zbl0125.09601MR233587
  16. [16] O. MANGASARIAN, « Pseudo-convex functions », J. Siam Control, 8 (1965), 281-290. Zbl0138.15702MR191659
  17. [17] O. MANGASARIAN, « Convexity, pseudo-convexity and quasi-convexity of composite functions », Cahiers Centre d'Études Recherche Opér., 12 (1970). 114-122. Zbl0218.90042MR285276
  18. [18] B. MARTOS. « Quasi-convexity and quasi-monotonicity in non-linear programming », Studia Sci. Math. Hungarica, 2 (1967), 265-273. Zbl0178.22901MR224375
  19. [19] A. PREKOPA, Programming under probabilistic constraints and programming under constraints involving conditional expectations, 7th Mathematical Programming Symposium 1970, Abstracts, 107-109, North-Holland Amsterdam 1970. 
  20. [20] P. A. SAMUELSON, Foundations of economic analysis, Harvard Univ. Press, Cambridge, 1963. Zbl0031.17401MR29145
  21. [21] J. STOER and C. WITZGALL, Convexity and optimization in finite dimensions I, Springer, New York, Berlin, 1970. Zbl0203.52203MR286498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.