Interior maximum norm estimates for some simple finite element methods

J. H. Bramble; V. Thomée

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1974)

  • Volume: 8, Issue: R2, page 5-18
  • ISSN: 0764-583X

How to cite

top

Bramble, J. H., and Thomée, V.. "Interior maximum norm estimates for some simple finite element methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 8.R2 (1974): 5-18. <http://eudml.org/doc/193259>.

@article{Bramble1974,
author = {Bramble, J. H., Thomée, V.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R2},
pages = {5-18},
publisher = {Dunod},
title = {Interior maximum norm estimates for some simple finite element methods},
url = {http://eudml.org/doc/193259},
volume = {8},
year = {1974},
}

TY - JOUR
AU - Bramble, J. H.
AU - Thomée, V.
TI - Interior maximum norm estimates for some simple finite element methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1974
PB - Dunod
VL - 8
IS - R2
SP - 5
EP - 18
LA - eng
UR - http://eudml.org/doc/193259
ER -

References

top
  1. [1] J. H. BRAMBLE, On the convergence of difference approximations for second order uniformly elliptic operators. Numerical Solution of Field Problems in Continuum Physics. SIAM-AMS Proceedings, Vol. 2, Providence R.I. 1970, 201-209. Zbl0234.65086MR260200
  2. [2] J. NITSCHE, Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme, Arch. Rational Mech. Anal., 36 (1970), 348-355. Zbl0192.44503MR255043
  3. [3] L. A. OGANESJAN and P. A. RUKHOVETS, Investigation of the convergence rate of variational-difference schemes for elliptic second order equations in a two-dimensional domain with a smooth boundary. -. Vy_isl. Mat. i Mat. Fir. 9 (1969),1102-1120 (Russian). (Translation : U.S.S.R. Comput. Math, and Math. Phys.). Zbl0234.65093MR295599
  4. [4] V. THOMÉE, Discrete interior Schauder estimates for elliptic difference operators. SIAM J. Numer. Anal., 5 (1968), 626-645. Zbl0176.15901MR238505
  5. [5] V. THOMÉE, Approximate solution of Dirichlet's problem using approximating polygonal domains. Topics in Numerical Analysis. Edited by J. J. H. Miller. Academic Press 1973, 311-328. Zbl0276.65054MR349034
  6. [6] V. THOMÉE and B. WESTERGREN, Elliptic difference equations and interior regularity, Numer. Math. II (1968), 196-210. Zbl0159.38204MR224303

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.