Interior maximum norm estimates for some simple finite element methods
- Volume: 8, Issue: R2, page 5-18
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBramble, J. H., and Thomée, V.. "Interior maximum norm estimates for some simple finite element methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 8.R2 (1974): 5-18. <http://eudml.org/doc/193259>.
@article{Bramble1974,
author = {Bramble, J. H., Thomée, V.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R2},
pages = {5-18},
publisher = {Dunod},
title = {Interior maximum norm estimates for some simple finite element methods},
url = {http://eudml.org/doc/193259},
volume = {8},
year = {1974},
}
TY - JOUR
AU - Bramble, J. H.
AU - Thomée, V.
TI - Interior maximum norm estimates for some simple finite element methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1974
PB - Dunod
VL - 8
IS - R2
SP - 5
EP - 18
LA - eng
UR - http://eudml.org/doc/193259
ER -
References
top- [1] J. H. BRAMBLE, On the convergence of difference approximations for second order uniformly elliptic operators. Numerical Solution of Field Problems in Continuum Physics. SIAM-AMS Proceedings, Vol. 2, Providence R.I. 1970, 201-209. Zbl0234.65086MR260200
- [2] J. NITSCHE, Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme, Arch. Rational Mech. Anal., 36 (1970), 348-355. Zbl0192.44503MR255043
- [3] L. A. OGANESJAN and P. A. RUKHOVETS, Investigation of the convergence rate of variational-difference schemes for elliptic second order equations in a two-dimensional domain with a smooth boundary. -. Vy_isl. Mat. i Mat. Fir. 9 (1969),1102-1120 (Russian). (Translation : U.S.S.R. Comput. Math, and Math. Phys.). Zbl0234.65093MR295599
- [4] V. THOMÉE, Discrete interior Schauder estimates for elliptic difference operators. SIAM J. Numer. Anal., 5 (1968), 626-645. Zbl0176.15901MR238505
- [5] V. THOMÉE, Approximate solution of Dirichlet's problem using approximating polygonal domains. Topics in Numerical Analysis. Edited by J. J. H. Miller. Academic Press 1973, 311-328. Zbl0276.65054MR349034
- [6] V. THOMÉE and B. WESTERGREN, Elliptic difference equations and interior regularity, Numer. Math. II (1968), 196-210. Zbl0159.38204MR224303
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.