Finite element methods for the transport equation

P. Lesaint

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1974)

  • Volume: 8, Issue: R2, page 67-93
  • ISSN: 0764-583X

How to cite

top

Lesaint, P.. "Finite element methods for the transport equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 8.R2 (1974): 67-93. <http://eudml.org/doc/193261>.

@article{Lesaint1974,
author = {Lesaint, P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R2},
pages = {67-93},
publisher = {Dunod},
title = {Finite element methods for the transport equation},
url = {http://eudml.org/doc/193261},
volume = {8},
year = {1974},
}

TY - JOUR
AU - Lesaint, P.
TI - Finite element methods for the transport equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1974
PB - Dunod
VL - 8
IS - R2
SP - 67
EP - 93
LA - eng
UR - http://eudml.org/doc/193261
ER -

References

top
  1. [1] CIARLET P. G. et RAVIART P. A., General Lagrange and Hermite interpolation in Rn with applications to finite element methods. Arch. Rational. Mech. Anal., 46, (1972), 177-199. Zbl0243.41004MR336957
  2. [2] CIARLET P. G. et RAVIART P. A., Interpolation theory over curved elements with applications to finite element methods. Computer Methods in Applied Mechanics and Engineering 1 (1972), 217-249. Zbl0261.65079MR375801
  3. [3] CIARLET P. G. et RAVIART P. A., The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. The Mathematical Foundations of the Finite Element Method with Applicationsto Partial Differential Equations. (A. K. Aziz, ed.) 409-474, Academic Press, New York, 1972. Zbl0262.65070MR421108
  4. [4] DUPONT T., Galerkin methods for first order hyperbolics: an example. Siam J. Numer. Anal. Vol. 10, n° 5 (1973). Zbl0237.65070MR349046
  5. [5] FRIEDRICHS K. O., Symmetric positive differential equations. Comm. on pure and appl. math. II (1958), 333-418. Zbl0083.31802MR100718
  6. [6] KAPER H. G., LEAF G. K. and LINDEMAN A. J., Application of finite element techniques for the numerical solution of the neutron transport and diffusion equations, Proceedings of Second Conference on Transport Theory, USAEC DTIE CONF-710302 (1971), 258-285. 
  7. [7] LATHROP K. D., Spatial differencing of the Transport equation : Positivity VS. Accuracy. Journ. of Comp. Physics 4 (1969), 475-498. Zbl0199.50703
  8. [8] LATHROP K. D., Transport theory numerical methods. Submitted to American Nuclear Society Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems (1973) LA-UR-73-517, Los Alamos Scientific Laboratory (1973). 
  9. [9] LATHROP K. D. and CARLSON B. G., Numerical Solution of the Boltzmann Transport Equation. Journ. of Comp. Physics 2 (1967), 173-197. Zbl0171.13902MR241013
  10. [10] LATHROP K. D. and CARLSON B. G., Transport Theory. The method of Discrete Ordinates. Computing Methods in Reactor Physics (Greenspan, H., C. N. Kelerband D. Okrent, editors), 165-266, Gordon and Breach, 1968. 
  11. [11] LESAINT P., Finite element methods for symmetric hyperbolic equations. Numer. Math. 21(1973), 244-255. Zbl0283.65061MR341902
  12. [12] LESAINT P. et GERIN-ROZE J., Isoparametric finite element methods for the neutron transport equation.To appear in Int. Jl. Num. Meth. Eng. Zbl0331.65084
  13. [13] LESAINT P. et RAVIART P. A., On a finite element method for solving the neutron transport equation.To appear. Zbl0341.65076
  14. [14] MILLER W. F. Jr., LEWIS E. E. and Rossow E. C., The application of phase-pace finite elements to the two dimensional transport equation in x - y geometry. Nucl. Sci.and Eng. 52, 12 (1973). 
  15. [15] ONISHI T., Application of finite element solution technique to neutron diffusion and transport equations. Proceedings of Conf. on new developments in Reactor Mathematics and Applications, USAEC DTIE CONF-710107, 258 (1971). 
  16. [16] PHILIPPS R. S. and LEONARD SARASON, Singular symmetric positive first order differential operators. Journal of Mathematics and Mechanics 15 (1966), 235-271. Zbl0141.28701MR186902
  17. [17] REED W. H. and HILL T. R., Triangular mesh methods for the neutron transport equation. Submitted to American Nuclear Society Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems (1973). LA UR-73-479, Los Alamos Laboratory, 1973. 
  18. [18] STRANG G. and Fix G., An analysis of finite element method, Prentice Hall, New York, 1973. Zbl0356.65096MR443377
  19. [19] ZIENKIEWICZ O. C, The Finite Element Method in Engineering Science. MacGraw-Hill, London, 1971. Zbl0237.73071MR315970
  20. [20] GIRAULT V., Theory of a finite difference method on irregular networks. Siam J. Numer. Anal., vol. 11, N. 2, March 1974. Zbl0296.65049MR431730

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.