Finite element methods for the transport equation
- Volume: 8, Issue: R2, page 67-93
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLesaint, P.. "Finite element methods for the transport equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 8.R2 (1974): 67-93. <http://eudml.org/doc/193261>.
@article{Lesaint1974,
author = {Lesaint, P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R2},
pages = {67-93},
publisher = {Dunod},
title = {Finite element methods for the transport equation},
url = {http://eudml.org/doc/193261},
volume = {8},
year = {1974},
}
TY - JOUR
AU - Lesaint, P.
TI - Finite element methods for the transport equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1974
PB - Dunod
VL - 8
IS - R2
SP - 67
EP - 93
LA - eng
UR - http://eudml.org/doc/193261
ER -
References
top- [1] CIARLET P. G. et RAVIART P. A., General Lagrange and Hermite interpolation in Rn with applications to finite element methods. Arch. Rational. Mech. Anal., 46, (1972), 177-199. Zbl0243.41004MR336957
- [2] CIARLET P. G. et RAVIART P. A., Interpolation theory over curved elements with applications to finite element methods. Computer Methods in Applied Mechanics and Engineering 1 (1972), 217-249. Zbl0261.65079MR375801
- [3] CIARLET P. G. et RAVIART P. A., The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. The Mathematical Foundations of the Finite Element Method with Applicationsto Partial Differential Equations. (A. K. Aziz, ed.) 409-474, Academic Press, New York, 1972. Zbl0262.65070MR421108
- [4] DUPONT T., Galerkin methods for first order hyperbolics: an example. Siam J. Numer. Anal. Vol. 10, n° 5 (1973). Zbl0237.65070MR349046
- [5] FRIEDRICHS K. O., Symmetric positive differential equations. Comm. on pure and appl. math. II (1958), 333-418. Zbl0083.31802MR100718
- [6] KAPER H. G., LEAF G. K. and LINDEMAN A. J., Application of finite element techniques for the numerical solution of the neutron transport and diffusion equations, Proceedings of Second Conference on Transport Theory, USAEC DTIE CONF-710302 (1971), 258-285.
- [7] LATHROP K. D., Spatial differencing of the Transport equation : Positivity VS. Accuracy. Journ. of Comp. Physics 4 (1969), 475-498. Zbl0199.50703
- [8] LATHROP K. D., Transport theory numerical methods. Submitted to American Nuclear Society Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems (1973) LA-UR-73-517, Los Alamos Scientific Laboratory (1973).
- [9] LATHROP K. D. and CARLSON B. G., Numerical Solution of the Boltzmann Transport Equation. Journ. of Comp. Physics 2 (1967), 173-197. Zbl0171.13902MR241013
- [10] LATHROP K. D. and CARLSON B. G., Transport Theory. The method of Discrete Ordinates. Computing Methods in Reactor Physics (Greenspan, H., C. N. Kelerband D. Okrent, editors), 165-266, Gordon and Breach, 1968.
- [11] LESAINT P., Finite element methods for symmetric hyperbolic equations. Numer. Math. 21(1973), 244-255. Zbl0283.65061MR341902
- [12] LESAINT P. et GERIN-ROZE J., Isoparametric finite element methods for the neutron transport equation.To appear in Int. Jl. Num. Meth. Eng. Zbl0331.65084
- [13] LESAINT P. et RAVIART P. A., On a finite element method for solving the neutron transport equation.To appear. Zbl0341.65076
- [14] MILLER W. F. Jr., LEWIS E. E. and Rossow E. C., The application of phase-pace finite elements to the two dimensional transport equation in x - y geometry. Nucl. Sci.and Eng. 52, 12 (1973).
- [15] ONISHI T., Application of finite element solution technique to neutron diffusion and transport equations. Proceedings of Conf. on new developments in Reactor Mathematics and Applications, USAEC DTIE CONF-710107, 258 (1971).
- [16] PHILIPPS R. S. and LEONARD SARASON, Singular symmetric positive first order differential operators. Journal of Mathematics and Mechanics 15 (1966), 235-271. Zbl0141.28701MR186902
- [17] REED W. H. and HILL T. R., Triangular mesh methods for the neutron transport equation. Submitted to American Nuclear Society Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems (1973). LA UR-73-479, Los Alamos Laboratory, 1973.
- [18] STRANG G. and Fix G., An analysis of finite element method, Prentice Hall, New York, 1973. Zbl0356.65096MR443377
- [19] ZIENKIEWICZ O. C, The Finite Element Method in Engineering Science. MacGraw-Hill, London, 1971. Zbl0237.73071MR315970
- [20] GIRAULT V., Theory of a finite difference method on irregular networks. Siam J. Numer. Anal., vol. 11, N. 2, March 1974. Zbl0296.65049MR431730
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.