Fonctions «spline» et méthode d'éléments finis

Marc Atteia

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1975)

  • Volume: 9, Issue: R2, page 13-40
  • ISSN: 0764-583X

How to cite

top

Atteia, Marc. "Fonctions «spline» et méthode d'éléments finis." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 9.R2 (1975): 13-40. <http://eudml.org/doc/193268>.

@article{Atteia1975,
author = {Atteia, Marc},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {fre},
number = {R2},
pages = {13-40},
publisher = {Dunod},
title = {Fonctions «spline» et méthode d'éléments finis},
url = {http://eudml.org/doc/193268},
volume = {9},
year = {1975},
}

TY - JOUR
AU - Atteia, Marc
TI - Fonctions «spline» et méthode d'éléments finis
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1975
PB - Dunod
VL - 9
IS - R2
SP - 13
EP - 40
LA - fre
UR - http://eudml.org/doc/193268
ER -

References

top
  1. [1] ATTEIA M., Fonctions « spline » et noyaux d'Aronszajn-Bergman, R.I.R.O., n° 3, 1970. 
  2. [2] BERGMAN-SCHIFFER, Kernel functions and differential equations, Academic Press, 1953. 
  3. [3] CIARLET P. G. and RAVIART . A., General Lagrange and Hermite interpolation in Rn with applications to finite elements methods, Arch. Rat. Mech. Anal., 46 (1972, pp. 177-199. Zbl0243.41004MR336957
  4. Interpolation Theory over Curved Element with applications to finite elements methods, Comp. Meth. Appl. Mech. Eng., 1 (1972), pp. 217-249. Zbl0261.65079MR375801
  5. [4] GARNIR, Analyse fonctionnelle, tome 1, Birkhauser-Verlag. 
  6. [5] GROTHENDIECK, Produits tensoriels topologiques, A.M.S. 
  7. [6] HILTON and WYLIE, Homology theory, Cambridge University Press. Zbl0091.36306
  8. [7] KARLIN S., Total Positivity, Standford, 1968. Zbl0219.47030
  9. [8] NEVEU J., Fonctions aléatoires gaussiennes, Cours de Montréal, 1968. 
  10. [9] NICOLAIDES R.A., On a class of finite elements generated by Lagrande interpolation. Zbl0282.65009MR317511
  11. [10] RAVIART P. A., Cours de D.E.A. sur les éléments finis, année 1971-1972. 
  12. [11] SCHWARTZ L., Sous-espaces hilbertiens d'espaces vectoriels tologiques et noyaux associés, J. d'Analyse Math., Jérusalem, 1964. Zbl0124.06504MR185423
  13. [12] SPANIER E. H., Algebraic topology, Mac Graw Hill, 1966. Zbl0145.43303MR210112
  14. [13] TREVES, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967. Zbl0171.10402MR225131
  15. [14] ZIENKIEWICZ, The finite element method, Mac Graw-Hill, 1971. Zbl0435.73072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.