Contrôle de min-max et feedback linéaire pour des systèmes dynamiques approchés en norme

A. Negro; M. Milanese

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1976)

  • Volume: 10, Issue: R1, page 61-80
  • ISSN: 0764-583X

How to cite

top

Negro, A., and Milanese, M.. "Contrôle de min-max et feedback linéaire pour des systèmes dynamiques approchés en norme." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 10.R1 (1976): 61-80. <http://eudml.org/doc/193276>.

@article{Negro1976,
author = {Negro, A., Milanese, M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {fre},
number = {R1},
pages = {61-80},
publisher = {Dunod},
title = {Contrôle de min-max et feedback linéaire pour des systèmes dynamiques approchés en norme},
url = {http://eudml.org/doc/193276},
volume = {10},
year = {1976},
}

TY - JOUR
AU - Negro, A.
AU - Milanese, M.
TI - Contrôle de min-max et feedback linéaire pour des systèmes dynamiques approchés en norme
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1976
PB - Dunod
VL - 10
IS - R1
SP - 61
EP - 80
LA - fre
UR - http://eudml.org/doc/193276
ER -

References

top
  1. [1] BENSOUSSAN A, Saddle points of convex-concave functionals with applications to linear quadratic differential games in Differential Games and Related Topics, Proceedings of the International Summer School, Varenna 1970, North-Holland 1971 Zbl0219.90060MR282683
  2. [2] DANSKIN J M, The theory of max-min, Springer, Berlin, 1967 Zbl0154.20009
  3. [3] DONATI F et MILANESE M, System identification with approximated models, 2nd IFAC Symposium, Prague, '70 
  4. [4] EKELAND I et TEMAN R, Analyse convexe et problèmes variationnels, Dunod,Paris 1974 Zbl0281.49001
  5. [5] FAURRE P, Linear differential games with completely optimal strategies, IFAC,Prague, 1966 
  6. [6] KATO T, Perturbation theory for linear operators, Springer, Berlin, 1966 Zbl0148.12601
  7. [7] LEMAIRE B, Saddle point problems in partial differential equations and applications to linear quadratic differential games, to appear Zbl0264.49002MR401194
  8. [8] LIONS J L, Controle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Pans, 1968 Zbl0179.41801MR244606
  9. [9] MENGA G et MILANESE M, Control of Systems in presence of uncertainly in norm, Preprints of VI International Summer School on Electronics and Automation, Herceg Novi, Yougoslavia 1971 
  10. [10] MILANESE M , Identification of uniformly approximating models of Systems, Ricerchedi Automatica, Vol II, n 2, 1971 
  11. [11] MILANESE M et NEGRO A, Uniform approximation of Systems A Banach space approach, Journal of Optimization Theory and Application, Vol 11, n 5, 1973 Zbl0247.93003MR346549
  12. [12] NEGRO A, Application of the Banach-Steinhaus Theorem to best approximation of Systems, Bollettino della U M I (4), 7, 1973, pp 176-185 Zbl0288.93013MR326254
  13. [13] SCHWARTZ L, Cours d'analyse, Hermann, Paris, 1967 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.