Numerical analytic continuation of holomorphic functions in C n

Harold D. Meyer

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1977)

  • Volume: 11, Issue: 1, page 75-92
  • ISSN: 0764-583X

How to cite

top

Meyer, Harold D.. "Numerical analytic continuation of holomorphic functions in $C^n$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 11.1 (1977): 75-92. <http://eudml.org/doc/193289>.

@article{Meyer1977,
author = {Meyer, Harold D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {1},
pages = {75-92},
publisher = {Dunod},
title = {Numerical analytic continuation of holomorphic functions in $C^n$},
url = {http://eudml.org/doc/193289},
volume = {11},
year = {1977},
}

TY - JOUR
AU - Meyer, Harold D.
TI - Numerical analytic continuation of holomorphic functions in $C^n$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1977
PB - Dunod
VL - 11
IS - 1
SP - 75
EP - 92
LA - eng
UR - http://eudml.org/doc/193289
ER -

References

top
  1. 1. J. R. CANNON, Error Estimates for Some Unstable Continuation Problems, S.I.A.M. J., Vol. 12, 1964, pp. 270-284. Zbl0134.08501MR168897
  2. 2. J. R. CANNON and J. DOUGLAS, Jr., The Approximation of Harmonic and Parabolic Functions on Half-Spaces from Interior Data, Numerical Analysis of Partial Differential Equations (C.I.M.E., 2e Ciclo, Ispra, 1967), pp. 193-230. Zbl0253.65067MR243755
  3. 3. J. DOUGLAS, Jr., A Numerical Method for Analytic Continuation, in Boundary Value Problems in Differential Equations, R. E. LANGER (Editor), University of Wisconsin Press, Madison, 1960, pp. 179-189. Zbl0100.12405MR117866
  4. 4. J. DOUGLAS, Jr., Unstable Physical Problems and their Numerical Approximation, Lecture Notes, Rice University, Houston, Texas. 
  5. 5. B. A. FUKS, Introduction to the Theory of Analytic Functions of Several Complex Variables. OGIZ. Moscow, 1948; English transl., Amer. Math. Soc, Transl., Vol. 8, 1963. Zbl0040.19002MR168793
  6. 6. S. I. GASS, Linear Programming Methods and Applications, McGraw-Hill, New York, 1958. Zbl0081.36702MR96554
  7. 7. E. HILLE, Analytic Function Theory, Vol. II, Blaisdell, Waltham, Mass., 1962. Zbl0102.29401MR201608
  8. 8. K. HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N. J., 1962. Zbl0117.34001MR133008
  9. 9. G. JOHNSON, Jr., Harmonic Functions on the Unit Disc I, Illinois J. Math., Vol. 12, 1968, pp. 366-385. Zbl0159.40502MR229846
  10. 10. H. D. MEYER, Thesis, The University of Chicago, Chicago, Illinois. 
  11. 11. H. D. MEYER, A Representation for a Distributional Solution of the Heat Equation, SIAM J. Math. Anal., Vol. 5, 1974. Zbl0253.35047MR358054
  12. 12. H. D. MEYER, Half-plane Representations and Harmonie Continuation, SIAM J. Math. Anal., Vol. 7. 1976, pp. 713-722; also (with SIAM permission) in Improperly Posed Boundary Value Problems, Pitman Publishing, London, 1975, pp. 24-38. Zbl0336.35030MR422642
  13. 13. R. SAYLOR, Thesis, Jlice University, Houston, Texas, 1966. 
  14. 14. R. SAYLOR, Numerical Elliptic Continuation, SIAM J. Numer. Anal., Vol. 4, 1967, pp. 575-581. Zbl0161.35904MR222461

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.