Finite element approximations of the von Kármán equations

F. Brezzi

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1978)

  • Volume: 12, Issue: 4, page 303-312
  • ISSN: 0764-583X

How to cite

top

Brezzi, F.. "Finite element approximations of the von Kármán equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 12.4 (1978): 303-312. <http://eudml.org/doc/193325>.

@article{Brezzi1978,
author = {Brezzi, F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Error Bounds; Displacement Finite Element Approximations; Karman Plate Bending Equations; Modified Newton Method},
language = {eng},
number = {4},
pages = {303-312},
publisher = {Dunod},
title = {Finite element approximations of the von Kármán equations},
url = {http://eudml.org/doc/193325},
volume = {12},
year = {1978},
}

TY - JOUR
AU - Brezzi, F.
TI - Finite element approximations of the von Kármán equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1978
PB - Dunod
VL - 12
IS - 4
SP - 303
EP - 312
LA - eng
KW - Error Bounds; Displacement Finite Element Approximations; Karman Plate Bending Equations; Modified Newton Method
UR - http://eudml.org/doc/193325
ER -

References

top
  1. 1. T. VON KARMAN, Festigkeitsprobleme in Maschinbau, Encycl. der Math. Wissenschaften, vol. 4, 1910, pp. 348-352. 
  2. 2. M. S. BERGER, On von Kármán Equations and the Buckling of a thin Elastic Plate, Comm. Pure Appl. Math., vol. 20, 1967, pp. 687-718. Zbl0162.56405MR221808
  3. 3. T. MIYOSHI, A Mixed Finite Element Method for the Solution of the von Kármán Equations, Num. Math., vol. 26, 1976, pp. 255-269. Zbl0315.65064MR438741
  4. 4. A. GOBETTI and L. D. MARINI, to appear. 
  5. 5. H. B. KELLER, Approximation Methods for Nonlinear Problems with Applications to two-Point Boundary Value Problems, Math. Comp., vol. 29, 1975, pp. 464-474. Zbl0308.65039MR371058
  6. 6. J. NE_AS, Les Méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967. 
  7. 7. I. BABUSKA, Error Bound for the Finite Element Method, Num. Math., vol. 16, 1971, pp. 322-333. Zbl0214.42001MR288971
  8. 8. P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolation in R n with applications to finite element methods, Arch. Rat. Mech. Anal., vol. 46, 1972, pp. 177-199. Zbl0243.41004MR336957
  9. 9. G. STRANG and G. FIX, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, 1973. Zbl0356.65096MR443377
  10. 10. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1977. Zbl0383.65058MR520174
  11. 11. S. G. MIKHLIN, The Numerical Performance of Variational Methods, Wolters Noordholf, Groningen, 1971. Zbl0209.18301MR278506
  12. 12. A. L. SCHATZ, An Observation Concerning Ritz-Galerkin Methods with Indefinite Bilinear Forms, Math, of Comp., vol. 28, 1974, pp. 959-962. Zbl0321.65059MR373326
  13. 13. D. J. ALLMAN, Some Fundamental Aspects of the Finite Element Analysis of Nonlinear Elastic Plate Bending, Finite Elements in Nonlinear Solid and Structural Mechanics, Geilo (Norway), August 29-Sept 1, 1977, pp. C. 06. Zbl0424.73069
  14. 14. J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes et applications, vol.1, Dunod, Paris, 1968. Zbl0165.10801MR247243

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.