Oscillateurs harmoniques faiblement perturbés : l'algorithme numérique des «pas de géants»

Jacqueline Boujot; Alain Pham Ngoc Dinh; Jean-Pierre Veyrier

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1980)

  • Volume: 14, Issue: 1, page 3-23
  • ISSN: 0764-583X

How to cite

top

Boujot, Jacqueline, Pham Ngoc Dinh, Alain, and Veyrier, Jean-Pierre. "Oscillateurs harmoniques faiblement perturbés : l'algorithme numérique des «pas de géants»." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 14.1 (1980): 3-23. <http://eudml.org/doc/193350>.

@article{Boujot1980,
author = {Boujot, Jacqueline, Pham Ngoc Dinh, Alain, Veyrier, Jean-Pierre},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {giant step method; slightly perturbed harmonic oscillator; one-step method; principle of the asymptotic expansions; convergence; consistency and stability conditions; Krylov-Bogolioubov; Runge-Kutta},
language = {fre},
number = {1},
pages = {3-23},
publisher = {Dunod},
title = {Oscillateurs harmoniques faiblement perturbés : l'algorithme numérique des «pas de géants»},
url = {http://eudml.org/doc/193350},
volume = {14},
year = {1980},
}

TY - JOUR
AU - Boujot, Jacqueline
AU - Pham Ngoc Dinh, Alain
AU - Veyrier, Jean-Pierre
TI - Oscillateurs harmoniques faiblement perturbés : l'algorithme numérique des «pas de géants»
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1980
PB - Dunod
VL - 14
IS - 1
SP - 3
EP - 23
LA - fre
KW - giant step method; slightly perturbed harmonic oscillator; one-step method; principle of the asymptotic expansions; convergence; consistency and stability conditions; Krylov-Bogolioubov; Runge-Kutta
UR - http://eudml.org/doc/193350
ER -

References

top
  1. 1 M ROSEAU, Vibrations non linéaires et théorie de la stabilité, Springer-Verlag, 1966 Zbl0135.30603MR196987
  2. 2 N BOGOLIUBOV et I MITROPOLSKI, Les méthodes asymptotiques en théorie des oscillations non linéaires, Gauthier-Villars, Pans, 1959 Zbl0247.34004
  3. 3 J KEVORKIAN, The Two Variable Expansion Procedure for the Approximate Solution of Certain Non Linear Differential Equations, Lectures Appl Math , part III, A M S , 1966 Zbl0156.16502
  4. 4 P HENRICI, Discrete Variable Methods in Ordinary Differential Equations, J Wiley, 1962 Zbl0112.34901MR135729
  5. 5 M R FEIX A NADEAU et J P VEYRIER, Numerical Algebraic Method «The giant step method», 4e Colloque international sur les methodes avancées de calcul en physique théorique, Saint-Maximim, 1977 
  6. 6 J BOUJOT et A PHAM, C R Acad, Sc , t 286, série A, 1978, p 1063-1066 Zbl0375.65037MR474157
  7. 7 J P VEYRIER, La méthode des pas de géants Application à l'équation de Duffing, Thèse de 3e cycle, Université d'Orléans, juin 1977 
  8. 8 H KABAKOV, A Perturbation Procedure for Weakly Coupled Oscillators, Int J Nonlinear Mechanics, vol 7, 1972, p 125-137 Zbl0238.70018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.