Gradient methods for the construction of Ljusternik-Schnirelmann critical values

Alexander Kratochvíl; Jindřich Nečas

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1980)

  • Volume: 14, Issue: 1, page 43-54
  • ISSN: 0764-583X

How to cite

top

Kratochvíl, Alexander, and Nečas, Jindřich. "Gradient methods for the construction of Ljusternik-Schnirelmann critical values." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 14.1 (1980): 43-54. <http://eudml.org/doc/193351>.

@article{Kratochvíl1980,
author = {Kratochvíl, Alexander, Nečas, Jindřich},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Ljusternik-Schnirelmann critical values; gradient methods; discretization of a continuous method; nonlinear eigenvalue problems; Hilbert space},
language = {eng},
number = {1},
pages = {43-54},
publisher = {Dunod},
title = {Gradient methods for the construction of Ljusternik-Schnirelmann critical values},
url = {http://eudml.org/doc/193351},
volume = {14},
year = {1980},
}

TY - JOUR
AU - Kratochvíl, Alexander
AU - Nečas, Jindřich
TI - Gradient methods for the construction of Ljusternik-Schnirelmann critical values
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1980
PB - Dunod
VL - 14
IS - 1
SP - 43
EP - 54
LA - eng
KW - Ljusternik-Schnirelmann critical values; gradient methods; discretization of a continuous method; nonlinear eigenvalue problems; Hilbert space
UR - http://eudml.org/doc/193351
ER -

References

top
  1. 1 M A ALTMAN, A Generalized Gradient Method of Minimizing a Functional on a Nonlinear Surface with Application to Nonlinear Programming, Mathematica (Cluj), Vol 11, No 34 1969 pp 13-27 Zbl0213.17203MR258246
  2. 2 S FUCIK, J NECAS and V SOUCEK, Spectral Analysis of Nonlinear Operators In Lecture Notes m Mathematics Springer-Verlag, 1973 Zbl0268.47056MR467421
  3. 3 A KRATOCHVIL and J NECASSecant Modulus Method for the Construction of a Solution of Nonlinear Eigenvalue Problems, Bollessmo U M I, Vo l16-B, No 5, 1979, pp 694-710 Zbl0435.47061MR546485
  4. 4 J NECAS, An Approximate Method for Finding Critical Points of Even Functionals (in Russian), Trudy Matem Inst A N S S S R , Vol 134, 1975, pp 235-239 Zbl0374.47034MR391169
  5. 5 W PETRY, Iterative Construction of a Solution of Nonlinear Eigenvalue Problems, Mathematica (Cluj), Vol 14, No 37, 2, 1972, pp 317-337 Zbl0282.65049MR358479
  6. 6 J SCHRODER, Storungsrechnung bei Eigenwertaufgaben und Verzweigungsaufgaben, Arch Rat Mech Anal Vol 1, 1957/1958, pp 436-468 Zbl0098.08801MR101489
  7. 7 M M VAJNBERG, Variational Methods for the Study of Nonlinear Operators, G I T T L , Moscow, 1956, English, transl , Holden-Day, San Francisco, Calif , 1964 Zbl0122.35501MR176364

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.