Three remarks on the use of Čebyšev polynomials for solving equations of the second kind

Eberhard Schock

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1981)

  • Volume: 15, Issue: 3, page 257-264
  • ISSN: 0764-583X

How to cite

top

Schock, Eberhard. "Three remarks on the use of Čebyšev polynomials for solving equations of the second kind." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 15.3 (1981): 257-264. <http://eudml.org/doc/193382>.

@article{Schock1981,
author = {Schock, Eberhard},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Chebyshev-Euler method; Chebyshev-semi-iterative method; projection method; quasi inverse for self-adjoint operators; Hilbert space; error estimate},
language = {eng},
number = {3},
pages = {257-264},
publisher = {Dunod},
title = {Three remarks on the use of Čebyšev polynomials for solving equations of the second kind},
url = {http://eudml.org/doc/193382},
volume = {15},
year = {1981},
}

TY - JOUR
AU - Schock, Eberhard
TI - Three remarks on the use of Čebyšev polynomials for solving equations of the second kind
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1981
PB - Dunod
VL - 15
IS - 3
SP - 257
EP - 264
LA - eng
KW - Chebyshev-Euler method; Chebyshev-semi-iterative method; projection method; quasi inverse for self-adjoint operators; Hilbert space; error estimate
UR - http://eudml.org/doc/193382
ER -

References

top
  1. [1] N. I. ACHIESER, Theory of Approximation F. Ungar P. Co., New York, 1956. Zbl0072.28403MR95369
  2. [2] S. BERNSTEIN, L'Approximation. Chelsea Publ. Co, New York. Zbl0237.01043
  3. [3] P. L. CEBYSEV, Ouvres. Chelsea, New York, 1961. 
  4. [4] G. MEINARDUS, Approximation von Funktionen und ihre numerische Behandlung.Springer, Heidelberg, 1964. Zbl0124.33103MR176272
  5. [5] W. NIETHAMMER, Iterationsverfahren und allgemeine Euler-Verfahren. Math. Z,102 (1967) 288-317. Zbl0225.65008MR238465
  6. [6] E. SCHOCK, On projection methods for linear equations of the second kind. J. Math. Anal. Appl. 45 (1974) 293-299. Zbl0303.65051MR344918
  7. [7] R. S. VARGA, Matrix iterative analysis. Prentice Hall, NewJersey, 1962. Zbl0133.08602MR158502
  8. [8] M. WOLF, Summationsverfahren und projektive Verfahren der Klasse Q υ . Diplomarbeit, Bonn, 1979. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.