Three remarks on the use of Čebyšev polynomials for solving equations of the second kind
- Volume: 15, Issue: 3, page 257-264
- ISSN: 0764-583X
Access Full Article
topHow to cite
topSchock, Eberhard. "Three remarks on the use of Čebyšev polynomials for solving equations of the second kind." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 15.3 (1981): 257-264. <http://eudml.org/doc/193382>.
@article{Schock1981,
author = {Schock, Eberhard},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Chebyshev-Euler method; Chebyshev-semi-iterative method; projection method; quasi inverse for self-adjoint operators; Hilbert space; error estimate},
language = {eng},
number = {3},
pages = {257-264},
publisher = {Dunod},
title = {Three remarks on the use of Čebyšev polynomials for solving equations of the second kind},
url = {http://eudml.org/doc/193382},
volume = {15},
year = {1981},
}
TY - JOUR
AU - Schock, Eberhard
TI - Three remarks on the use of Čebyšev polynomials for solving equations of the second kind
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1981
PB - Dunod
VL - 15
IS - 3
SP - 257
EP - 264
LA - eng
KW - Chebyshev-Euler method; Chebyshev-semi-iterative method; projection method; quasi inverse for self-adjoint operators; Hilbert space; error estimate
UR - http://eudml.org/doc/193382
ER -
References
top- [1] N. I. ACHIESER, Theory of Approximation F. Ungar P. Co., New York, 1956. Zbl0072.28403MR95369
- [2] S. BERNSTEIN, L'Approximation. Chelsea Publ. Co, New York. Zbl0237.01043
- [3] P. L. CEBYSEV, Ouvres. Chelsea, New York, 1961.
- [4] G. MEINARDUS, Approximation von Funktionen und ihre numerische Behandlung.Springer, Heidelberg, 1964. Zbl0124.33103MR176272
- [5] W. NIETHAMMER, Iterationsverfahren und allgemeine Euler-Verfahren. Math. Z,102 (1967) 288-317. Zbl0225.65008MR238465
- [6] E. SCHOCK, On projection methods for linear equations of the second kind. J. Math. Anal. Appl. 45 (1974) 293-299. Zbl0303.65051MR344918
- [7] R. S. VARGA, Matrix iterative analysis. Prentice Hall, NewJersey, 1962. Zbl0133.08602MR158502
- [8] M. WOLF, Summationsverfahren und projektive Verfahren der Klasse . Diplomarbeit, Bonn, 1979.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.