The error estimates for the infinite element method for eigenvalue problems

Houde Han

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1982)

  • Volume: 16, Issue: 2, page 113-128
  • ISSN: 0764-583X

How to cite

top

Han, Houde. "The error estimates for the infinite element method for eigenvalue problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 16.2 (1982): 113-128. <http://eudml.org/doc/193393>.

@article{Han1982,
author = {Han, Houde},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {infinite element method},
language = {eng},
number = {2},
pages = {113-128},
publisher = {Dunod},
title = {The error estimates for the infinite element method for eigenvalue problems},
url = {http://eudml.org/doc/193393},
volume = {16},
year = {1982},
}

TY - JOUR
AU - Han, Houde
TI - The error estimates for the infinite element method for eigenvalue problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1982
PB - Dunod
VL - 16
IS - 2
SP - 113
EP - 128
LA - eng
KW - infinite element method
UR - http://eudml.org/doc/193393
ER -

References

top
  1. [1] H. HAN, The infinite element method for eigenvalue problems. Tech TR-80-70, MD80-80-HH, October 1980. Department of Mathematics, University of Maryland. 
  2. [2] L. A. YING, The infinite similar element method for calculating stress intensity factors. Scientia Sinica, 21, 1978, 19-43. Zbl0378.73075MR495569
  3. [3] H. HAN and L. A. YING, An iterative method in the infinite element. Mathematicae Numericae Sinica, 1, 1979, 91-99. Zbl0451.65082MR656882
  4. [4] V. A. KONDRAT'EV, Boundary problems for elliptic equations with conical or angular points. Trans Moscow Math Soc, 16, 1967, 227-313. Zbl0194.13405MR226187
  5. [5] L. A. YING, On the convergence of infinite similar element method. Acta Mathematicae Applagatae Sinica, 2, 1979, 149-166 MR549044
  6. [6] J. H. BRAMBLE and J.E OSBORN, Rate of convergence estimates for non-self-adjoint eigenvalue approximations. Math Comp, 27, 1973, 525-549. Zbl0305.65064MR366029
  7. [7] R. A. ADAMS, Sobolev spaces. New York, Academic Press, 1975. Zbl0314.46030MR450957
  8. [8] H. HAN, The numerical solutions of interface problems by infinite element method. Tech TR-80-7, MD80-7-HH, February 1980. Departement of Mathematics, University of Maryland. Zbl0478.73051
  9. [9] P. DESTUYNDER and M DJAOUA, Estimation de l'erreur sur le coefficient de la singularite de la solution d'un problème elliptique sur un ouvert avec coin. R.A.I.R.O. Analyse Numerique/Numberical Analysis, Vol. 14, n° 3, 1980, pp. 239 à 248. Zbl0456.65062MR592752
  10. [10] I. BABUSKA, R. B. KELLOGG and J. PITKARANTA, Direct and inverse error estimates for finite elements with mesh refinements. Numer Math, 33, 1979, 447-471. Zbl0423.65057MR553353
  11. [11] R. W. THATCHER, The use of infinite grid refinements at singularities in the solution of Laplace's equation. Numer Math. 25, 1976, 163-178. Zbl0299.65061MR400748

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.