Construction of surface spline interpolants of scattered data over finite domains

Nira Dyn; David Levin

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1982)

  • Volume: 16, Issue: 3, page 201-209
  • ISSN: 0764-583X

How to cite

top

Dyn, Nira, and Levin, David. "Construction of surface spline interpolants of scattered data over finite domains." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 16.3 (1982): 201-209. <http://eudml.org/doc/193397>.

@article{Dyn1982,
author = {Dyn, Nira, Levin, David},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {surface spline interpolants; scattered data; smooth interpolation; Ritz- type method; numerical experiments; thin plate spline},
language = {eng},
number = {3},
pages = {201-209},
publisher = {Dunod},
title = {Construction of surface spline interpolants of scattered data over finite domains},
url = {http://eudml.org/doc/193397},
volume = {16},
year = {1982},
}

TY - JOUR
AU - Dyn, Nira
AU - Levin, David
TI - Construction of surface spline interpolants of scattered data over finite domains
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1982
PB - Dunod
VL - 16
IS - 3
SP - 201
EP - 209
LA - eng
KW - surface spline interpolants; scattered data; smooth interpolation; Ritz- type method; numerical experiments; thin plate spline
UR - http://eudml.org/doc/193397
ER -

References

top
  1. [1] J P AUBIN, Approximation of Elliptic Boundary Value Problems Wiley-Inter-science(1972) Zbl0248.65063MR478662
  2. [2] J DUCHON, Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces, R A I R O Analyse Numérique, 10 (1976), 5-12 MR470565
  3. [3] N DYN, G WAHBA, On the estimation of functions of several variables from aggregated data University of Wisconsin-Madison, Technical Report No 1974 (1979) Zbl0488.65079
  4. [4] J MEINGUET, Multivanate interpolation at arbitrary points made simple, Journal of Applied Mathematics and Physics (ZAMP), 30 (1979), 292-304 Zbl0428.41008MR535987

NotesEmbed ?

top

You must be logged in to post comments.