Triangulation automatique d’un polyèdre en dimension
- Volume: 16, Issue: 3, page 211-242
- ISSN: 0764-583X
Access Full Article
topHow to cite
topHermeline, F.. "Triangulation automatique d’un polyèdre en dimension $N$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 16.3 (1982): 211-242. <http://eudml.org/doc/193398>.
@article{Hermeline1982,
author = {Hermeline, F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {polyhedra; automatic triangulation; simplicial partition; Voronoi diagram; Delaunay triangulation; convex hull; volume computation; FORTRAN program; finite element method},
language = {fre},
number = {3},
pages = {211-242},
publisher = {Dunod},
title = {Triangulation automatique d’un polyèdre en dimension $N$},
url = {http://eudml.org/doc/193398},
volume = {16},
year = {1982},
}
TY - JOUR
AU - Hermeline, F.
TI - Triangulation automatique d’un polyèdre en dimension $N$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1982
PB - Dunod
VL - 16
IS - 3
SP - 211
EP - 242
LA - fre
KW - polyhedra; automatic triangulation; simplicial partition; Voronoi diagram; Delaunay triangulation; convex hull; volume computation; FORTRAN program; finite element method
UR - http://eudml.org/doc/193398
ER -
References
top- [1] Y BABUSKA et A K AZIZ, On the angle condition in the finite element method, Siam J Num Anal, Vol 13, n° 2 (1976) Zbl0324.65046MR455462
- [2] M BERGER, Geometrie tome 3 convexes et polytopes, polyedres réguliers, aires et volumes, Fernand Nathan Paris (1978) Zbl0423.51001
- [3] W BROSTAW, JP DUSSAULT et B L FOX, Construction of Vornot polyhedra, J Comp Phys 29 (1978), pp 81-92 Zbl0392.73097MR510461
- [4] J CARNET, Une methode heuristique de maillage dans le plan pour la mise en oeuvre des elements finis, These Paris (1978)
- [5] J C CAVENDISH, Automatic triangulation of arbitrary planar domains for the finite element method, Int J Num Meth Engng 8 (1974) pp 679-696 Zbl0284.73045
- [6] P G CIARLET, The finite element method for elliptic problems, North-Holland (1978) Zbl0383.65058MR520174
- [7] H S M COXETER, L FEW et C A ROGERS, Covering space with equal spheres, Mathematika 6(1959), pp 147-157 Zbl0094.35301MR124821
- [8] B DELAUNAY, Sur la sphère vide, Bul Acad Sci URSS Class Sci Nat (1934), pp 793-800 Zbl0010.41101
- [9] W F EDDY, A new convex hull algorithm for planar sets, ACM TMS, vol 3, n° 4 (1977), pp 398-403 Zbl0374.68036
- [10] P J GREEN et R SIBSON, Computing Dirichlet tesselations in the plane, The Computer Journal, vol 21, n°2 (1977), pp 168-173 Zbl0377.52001MR485467
- [11] F HERMELINE, Une methode automatique de maillage en dimension n, These Paris (1980)
- [12] D T LEE, Two-dimensional Voronot diagrams in Lp-Metric, J of the ACM, vol 27, n° 4 (1980), pp 604-618 Zbl0445.68053MR594689
- [13] S NORDBECK et B RYSTEDT, Computer cartography point in polygon programs, Bit, 7 (1967), pp 39-64 Zbl0146.14902
- [14] C S PESKIN, Lagrangian method for the Navier-Stokes equations, Communication non publiée
- [15] F P PREPARATA et S J HONG, Convex hull of finite sets of points in two and three dimension, Comm of the ACM, vol 20, n°2 (1977), p 87 Zbl0342.68030MR488985
- [16] R SIBSON, Locally equiangular triangulations, Comp J , vol 21, n° 3 (1977), p 243 MR507358
- [17] W C THACKER, A brief review of techniques for generating irregular computational grids, Int J Num Met Engng, vol 15 (1980), pp 1335-1341 Zbl0438.76003
- [18] P F WATSON, Computing the n-dimensional Delaunay tesselation with application to Voronot polytopes, The Computer Journal, vol 24, n° 2 (1981) MR619577
- [19] A BOWYER, Computing Dirichlet tesselations, The Computer Journal, vol 24, n° 2 (1981) MR619576
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.