Triangulation automatique d’un polyèdre en dimension N

F. Hermeline

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1982)

  • Volume: 16, Issue: 3, page 211-242
  • ISSN: 0764-583X

How to cite

top

Hermeline, F.. "Triangulation automatique d’un polyèdre en dimension $N$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 16.3 (1982): 211-242. <http://eudml.org/doc/193398>.

@article{Hermeline1982,
author = {Hermeline, F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {polyhedra; automatic triangulation; simplicial partition; Voronoi diagram; Delaunay triangulation; convex hull; volume computation; FORTRAN program; finite element method},
language = {fre},
number = {3},
pages = {211-242},
publisher = {Dunod},
title = {Triangulation automatique d’un polyèdre en dimension $N$},
url = {http://eudml.org/doc/193398},
volume = {16},
year = {1982},
}

TY - JOUR
AU - Hermeline, F.
TI - Triangulation automatique d’un polyèdre en dimension $N$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1982
PB - Dunod
VL - 16
IS - 3
SP - 211
EP - 242
LA - fre
KW - polyhedra; automatic triangulation; simplicial partition; Voronoi diagram; Delaunay triangulation; convex hull; volume computation; FORTRAN program; finite element method
UR - http://eudml.org/doc/193398
ER -

References

top
  1. [1] Y BABUSKA et A K AZIZ, On the angle condition in the finite element method, Siam J Num Anal, Vol 13, n° 2 (1976) Zbl0324.65046MR455462
  2. [2] M BERGER, Geometrie tome 3 convexes et polytopes, polyedres réguliers, aires et volumes, Fernand Nathan Paris (1978) Zbl0423.51001
  3. [3] W BROSTAW, JP DUSSAULT et B L FOX, Construction of Vornot polyhedra, J Comp Phys 29 (1978), pp 81-92 Zbl0392.73097MR510461
  4. [4] J CARNET, Une methode heuristique de maillage dans le plan pour la mise en oeuvre des elements finis, These Paris (1978) 
  5. [5] J C CAVENDISH, Automatic triangulation of arbitrary planar domains for the finite element method, Int J Num Meth Engng 8 (1974) pp 679-696 Zbl0284.73045
  6. [6] P G CIARLET, The finite element method for elliptic problems, North-Holland (1978) Zbl0383.65058MR520174
  7. [7] H S M COXETER, L FEW et C A ROGERS, Covering space with equal spheres, Mathematika 6(1959), pp 147-157 Zbl0094.35301MR124821
  8. [8] B DELAUNAY, Sur la sphère vide, Bul Acad Sci URSS Class Sci Nat (1934), pp 793-800 Zbl0010.41101
  9. [9] W F EDDY, A new convex hull algorithm for planar sets, ACM TMS, vol 3, n° 4 (1977), pp 398-403 Zbl0374.68036
  10. [10] P J GREEN et R SIBSON, Computing Dirichlet tesselations in the plane, The Computer Journal, vol 21, n°2 (1977), pp 168-173 Zbl0377.52001MR485467
  11. [11] F HERMELINE, Une methode automatique de maillage en dimension n, These Paris (1980) 
  12. [12] D T LEE, Two-dimensional Voronot diagrams in Lp-Metric, J of the ACM, vol 27, n° 4 (1980), pp 604-618 Zbl0445.68053MR594689
  13. [13] S NORDBECK et B RYSTEDT, Computer cartography point in polygon programs, Bit, 7 (1967), pp 39-64 Zbl0146.14902
  14. [14] C S PESKIN, Lagrangian method for the Navier-Stokes equations, Communication non publiée 
  15. [15] F P PREPARATA et S J HONG, Convex hull of finite sets of points in two and three dimension, Comm of the ACM, vol 20, n°2 (1977), p 87 Zbl0342.68030MR488985
  16. [16] R SIBSON, Locally equiangular triangulations, Comp J , vol 21, n° 3 (1977), p 243 MR507358
  17. [17] W C THACKER, A brief review of techniques for generating irregular computational grids, Int J Num Met Engng, vol 15 (1980), pp 1335-1341 Zbl0438.76003
  18. [18] P F WATSON, Computing the n-dimensional Delaunay tesselation with application to Voronot polytopes, The Computer Journal, vol 24, n° 2 (1981) MR619577
  19. [19] A BOWYER, Computing Dirichlet tesselations, The Computer Journal, vol 24, n° 2 (1981) MR619576

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.