Approximation spectral d'un opérateur borné et normal à l'aide de ses fonctions de la densité spectrale
- Volume: 17, Issue: 1, page 93-109
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMoszyński, Krzysztof. "Approximation spectral d'un opérateur borné et normal à l'aide de ses fonctions de la densité spectrale." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 17.1 (1983): 93-109. <http://eudml.org/doc/193411>.
@article{Moszyński1983,
author = {Moszyński, Krzysztof},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {approximation of spectral elements; bounded normal operator; Hilbert space; spectral density functions; algorithms; least squares method; convergence; error estimates; continuous spectrum; quadrature formula; positive coefficients},
language = {fre},
number = {1},
pages = {93-109},
publisher = {Dunod},
title = {Approximation spectral d'un opérateur borné et normal à l'aide de ses fonctions de la densité spectrale},
url = {http://eudml.org/doc/193411},
volume = {17},
year = {1983},
}
TY - JOUR
AU - Moszyński, Krzysztof
TI - Approximation spectral d'un opérateur borné et normal à l'aide de ses fonctions de la densité spectrale
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1983
PB - Dunod
VL - 17
IS - 1
SP - 93
EP - 109
LA - fre
KW - approximation of spectral elements; bounded normal operator; Hilbert space; spectral density functions; algorithms; least squares method; convergence; error estimates; continuous spectrum; quadrature formula; positive coefficients
UR - http://eudml.org/doc/193411
ER -
References
top- 1. A. K. AzizMathematical foundations of the finite element method. New York, 1972.
- 2. C. L. LAWSON, R. J. HANSON, Solving least squares problems. Prentice-Hall, 1974. Zbl0860.65028MR366019
- 3. S. LOJASIEWICZ, Wstep do teorii funkcji rzeczywistych. PWN Warszawa, 1973. Zbl0417.26003MR432826
- 4. K. MOSZYNSKJ, On approximation of the spectral density function of a self adjoint operator. To appear in Studia Scientiarum Mathematicarum Hungarica, N° 14, 1979. Zbl0439.47018
- 5. K. MOSZYNSKI, Approximation of the spectrum of a bounded, normal operator with the help of its spectral density functions. Preprint N°249. Institute of Mathematics, Polish Academy of Sciences, Warsaw, oct. 1981. Zbl0472.47004
- 6. Sz. F. RIESZ, B. NAGY, Leçons d'analyse fonctionnelle. Akademiai Kiado. Budapest, 1952. Zbl0122.11205
- 7. T. J. RIVLIN, An introduction to the approximation of functions. Blaisdell Publ., 1969. Zbl0189.06601MR634509
- 8. A. SARD, Linear approximation. AMS 1963. Zbl0115.05403MR158203
- 9. A. H. STROUD, Approximate calculation of multiple intégrals. Prentice-Hall, 1971. Zbl0379.65013MR327006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.